1
|
Weak light photodetector based on upconversion luminescence for glutathione detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Chai Y, Zhou X, Chen X, Wen C, Ke J, Feng W, Li F. Influence on the Apparent Luminescent Lifetime of Rare-Earth Upconversion Nanoparticles by Quenching the Sensitizer's Excited State for Hypochlorous Acid Detection and Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14004-14011. [PMID: 35297600 DOI: 10.1021/acsami.1c21838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide-ion-doped upconversion materials have been widely used in biological detection, bioimaging, displays, and anticounterfeiting due to their abilities of real-time readings, high spatial resolution, and deep tissue penetration. The typically long fluorescence lifetimes of rare-earth nanoparticles, in the microsecond to millisecond range, make them useful in interference-free lifetime detection imaging. Most detection systems are accompanied by fluorescence resonance energy transfer (FRET), in which the lifetime of the luminescence center can be used as a signal to reveal the degree of FRET. Due to the complex energy level structure and complex energy transfer processes, the apparent lifetimes of upconversion nanoparticles (UCNPs) do not simply equal the decay time of the corresponding energy level, inducing an insignificant lifetime change in the upconversion detection system. In this study, the relationship between the apparent luminescence lifetime of upconversion and the decay rate of each energy level was studied by numerical simulations. It was proved that the apparent lifetime of the emission at 540 nm was mainly affected by the decay rate of Yb3+. We then constructed a nanocomposite with Rh1000 fluorophores loaded onto the surface of UCNPs to quench the sensitizer Yb3+. We found that the lifetime of the emission at 540 nm from Er3+ was affected to a large extent by the number of attached Rh1000 molecules, proving the greater influence on the apparent luminescent lifetime of Er3+ at 540 nm caused by quenching the Yb3+ excited state. The qualitative detection of hypochlorous acid (HClO) in vivo was also achieved using the luminescent lifetime as the signal.
Collapse
Affiliation(s)
- Yingjie Chai
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xiaobo Zhou
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Xinyu Chen
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Chenqing Wen
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Jiaming Ke
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People's Republic of China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
3
|
Xu J, Li H, Arumugam SS, Rong Y, Wang P, Chen Q. A turn-on fluorescence sensor for rapid sensing of ATP based on luminescence resonance energy transfer between upconversion nanoparticles and Cy3 in vivo or vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120341. [PMID: 34492515 DOI: 10.1016/j.saa.2021.120341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Adenosine triphosphate (ATP) is an energy molecule of significant importance, and, the monitoring of ATP in living cells is considerable for the clinical diagnosis of many related diseases, including cancer. Upconversion nanoparticles (UCNPs) have recently been attracting widespread interest in biomedical applications due to their chemical and thermal stability, high sensitivity, good biocompatibility, and excellent tissue penetration. Herein, a Cy3-aptamer-cDNA- UCNPs nanosensor was synthesized, based on the luminescence resonance energy transfer (LRET) between UCNPs and Cy3 for monitoring ATP in living cells. It showed a selective sensing ability for ATP levels by changes of fluorescence intensity of UNCPs at 536 nm. The investigated biosensor showed a precise, efficient detection with sufficient selectivity which was achieved through the optimization of conditions. In the range of 1-1000 μM, the ATP-induced changes of the fluorescence intensity were linearly proportional to the ATP concentrations. Furthermore, the cytotoxicity assay revealed that the UCNPs sensor exhibited favorable biocompatibility, implicating the use of UCNPs in vivo imaging. This study highlights the potential of using a combination of UCNPs and ATP-binding aptamer to design an ATP-activatable probe for fluorescence-mediated imaging in living cells. These results implied that the nanosensor can be applicable for the monitoring of intracellular ATP by fluorescence imaging and the quantitative analysis of biological liquids.
Collapse
Affiliation(s)
- Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Selva Sharma Arumugam
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pingyue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
5
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Ding C, Jin M, Ma J, Chen Z, Shen Z, Yang D, Shi D, Liu W, Kang M, Wang J, Li J, Qiu Z. Nano-Al 2O 3 can mediate transduction-like transformation of antibiotic resistance genes in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124224. [PMID: 33092882 DOI: 10.1016/j.jhazmat.2020.124224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 05/15/2023]
Abstract
The prevalence of various antibiotic resistance genes (ARGs) and resistant bacteria has caused global public health risks. The carrier transport mediated by phages or membrane vesicles is an important way for horizontal transfer of ARGs. Nano metal oxide particles (NMOPs), which can enter cell through the cell membrane, may be used as the carriers of genes. However, whether they can be used as transmembrane delivery vectors for the horizontal ARG transfer remains unknown. Here, we set up a model of MONPs-mediated transfer of ARGs, and demonstrate that NMOPs, especially for nano-Al2O3, can act as carriers mediating the transduction-like ARG transformation in water. The highest transfer rate mediated by nano-Al2O3 is 4.53 × 104 cfu/mmol, and it is 104 times higher than that of control. Nano-Al2O3 can combine with plasmid coding for ARGs to form high-density package and prevent ARGs from degradation by endonuclease. The results of superresolution fluorescence microscopy and transmission electron microscopy show that nano-Al2O3 can carry ARGs for transmembrane transport. Genome-wide transcription microarray and qPCR indicate that SOS response was closely related to transduction-like ARG transformation mediated by nano-Al2O3. This study is the first to demonstrate that as a new transmembrane carrier, nano-Al2O3 can also cause ARGs diffusion in water.
Collapse
Affiliation(s)
- Chengshi Ding
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Danyang Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
8
|
Jouyban A, Rahimpour E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta 2020; 220:121383. [PMID: 32928407 DOI: 10.1016/j.talanta.2020.121383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Upconversion materials have been the focus of a large body of research in analytical and clinical fields in the last two decades owing to their ability to convert light between various spectral regions and their particular photophysical features. They emit efficient and sharp ultraviolet (UV) or visible luminescence after excitation with near-infrared (NIR) light. These features overcome some of the disadvantages reported for conventional fluorescent materials and provide opportunities for high sensitivity chemo-and bio-sensing. Here, we review studies that used upconversion materials as sensors for the determination of pharmaceuticals and biomolecules in the last two decades. The articles included in this review were retrieved from the SCOPUS database using the search phrases: "upconversion nanoparticles for determination of pharmaceutical compounds", and "upconversion nanoparticles for determination of biomolecules". Details of each developed upconversion nanoparticles based sensor along with their relevant analytical parameters are reported and carefully explained.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 1411713135, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
9
|
Hu Q, Wei Q, Zhang P, Li S, Xue L, Yang R, Wang C, Zhou L. An up-converting phosphor technology-based lateral flow assay for point-of-collection detection of morphine and methamphetamine in saliva. Analyst 2019; 143:4646-4654. [PMID: 30168551 DOI: 10.1039/c8an00651b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Morphine (Mop) and methamphetamine (Met) are highly addictive drugs worldwide. Point-of-collection testing (POCT) for drug-of-abuse screening is important in abuse/rehabilitation clinics and law-enforcement agencies. We established an up-converting phosphor technology-based lateral flow assay (UPT-LFA) as a point-of-collection testing (POCT) method, namely Mop-UPT-LFA and Met-UPT-LFA, for the detection of morphine and methamphetamine without complicated sample pre-treatment, respectively, in saliva. The sensitivities of the Mop-UPT-LFA and the Met-UPT-LFA were 5 and 10 ng mL-1 with accurate quantitation of 5-100 ng mL-1 and 10-250 ng mL-1 for morphine and methamphetamine, respectively, for a detection time of 15 min. In reference to the detection limits of 20 and 25 ng mL-1 for morphine and methamphetamine, respectively, in the Driving Under the Influence of Drugs, Alcohol and Medicines (DRUID) program of the European Union, the percentage test/control (T/C) ratio of the UPT-LFA between 2 and 15 min reached 101% and 86%, and the UPT-LFA produced accurate qualitative results in 2 min for 100 simulated-saliva samples with the exception of a few weakly positive samples. The sample and sample treating buffer were mixed and added to the test strip, and the test was conducted 15 min later. Although we found no significant difference between the UPT-LFA quantitative test and the liquid chromatography tandem mass spectrometry (LC-MS) test, compared with the latter, the UPT-LFA was substantially faster and had higher detection efficiency. The UPT-LFA showed more accurate qualitative results than the LC-MS for 50 simulated-saliva samples. The ease of operation, high sensitivity, and accuracy of the UPT-LFA make it a valid candidate POCT method for drug-of-abuse screening.
Collapse
Affiliation(s)
- Qiushi Hu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lanthanide-Doped Nanoparticles for Diagnostic Sensing. NANOMATERIALS 2017; 7:nano7120411. [PMID: 29168770 PMCID: PMC5746901 DOI: 10.3390/nano7120411] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
Lanthanide-doped nanoparticles exhibit unique optical properties, such as a long luminescence lifetime (up to several milliseconds), sharp emission peaks, and upconversion luminescence over the range of wavelengths from near-infrared to visible. Exploiting these optical properties, lanthanide-doped nanoparticles have been widely utilized for cellular and small animal imaging with the absence of background autofluorescence. In addition, these nanoparticles have advantages of high signal-to-noise ratio for highly sensitive and selective diagnostic detection. In this review, we summarize and discuss recent progress in the development of highly sensitive diagnostic methods using lanthanide-doped nanoparticles. Combined with a smartphone, portable luminescence detecting platforms could be widely applied in point-of-care tests.
Collapse
|
11
|
Muhr V, Würth C, Kraft M, Buchner M, Baeumner AJ, Resch-Genger U, Hirsch T. Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. Anal Chem 2017; 89:4868-4874. [DOI: 10.1021/acs.analchem.6b04662] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Verena Muhr
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| | - Christian Würth
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany
| | - Marco Kraft
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany
| | - Markus Buchner
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| | - Ute Resch-Genger
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| |
Collapse
|
12
|
Doughan S, Uddayasankar U, Peri A, Krull UJ. A paper-based multiplexed resonance energy transfer nucleic acid hybridization assay using a single form of upconversion nanoparticle as donor and three quantum dots as acceptors. Anal Chim Acta 2017; 962:88-96. [DOI: 10.1016/j.aca.2017.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/31/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022]
|
13
|
Hou S, Zhang A, Su M. Nanomaterials for Biosensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E58. [PMID: 28335185 PMCID: PMC5302573 DOI: 10.3390/nano6040058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/17/2022]
Abstract
Nanomaterials have shown tremendous potentials to impact the broad field of biological sensing. Nanomaterials, with extremely small sizes and appropriate surface modifications, allow intimate interaction with target biomolecules. [...].
Collapse
Affiliation(s)
- Sichao Hou
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Aiying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|