1
|
Ganareal TACS, Balbin MM, Monserate JJ, Salazar JR, Mingala CN. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA. Biochem Biophys Res Commun 2018; 496:988-997. [PMID: 29366791 DOI: 10.1016/j.bbrc.2018.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 01/20/2023]
Abstract
Gold nanoparticle (AuNP) is considered to be the most stable metal nanoparticle having the ability to be functionalized with biomolecules. Recently, AuNP-based DNA detection methods captured the interest of researchers worldwide. Paratuberculosis or Johne's disease, a chronic gastroenteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), was found to have negative effect in the livestock industry. In this study, AuNP-based probes were evaluated for the specific and sensitive detection of MAP DNA. AuNP-based probe was produced by functionalization of AuNPs with thiol-modified oligonucleotide and was confirmed by Fourier-Transform Infrared (FTIR) spectroscopy. UV-Vis spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize AuNPs. DNA detection was done by hybridization of 10 μL of DNA with 5 μL of probe at 63 °C for 10 min and addition of 3 μL salt solution. The method was specific to MAP with detection limit of 103 ng. UV-Vis and SEM showed dispersion and aggregation of the AuNPs for the positive and negative results, respectively, with no observed particle growth. This study therefore reports an AuNP-based probes which can be used for the specific and sensitive detection of MAP DNA.
Collapse
Affiliation(s)
| | - Michelle M Balbin
- Biosafety and Environment Section, Philippine Carabao Center National Headquarters and Gene Pool, Science City of Muñoz 3120, Nueva Ecija, Philippines
| | - Juvy J Monserate
- Department of Chemistry, College of Arts and Sciences, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
| | - Joel R Salazar
- Department of Chemistry, College of Arts and Sciences, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
| | - Claro N Mingala
- Biosafety and Environment Section, Philippine Carabao Center National Headquarters and Gene Pool, Science City of Muñoz 3120, Nueva Ecija, Philippines; Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines.
| |
Collapse
|
2
|
Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann K, Kurrikoff K, Zou X, Langel Ü. Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery. Sci Rep 2017; 7:9159. [PMID: 28831162 PMCID: PMC5567346 DOI: 10.1038/s41598-017-09803-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022] Open
Abstract
Magnetic nanoparticles (MNPs, Fe3O4) incorporated into the complexes of cell penetrating peptides (CPPs)-oligonucleotides (ONs) promoted the cell transfection for plasmid transfection, splice correction, and gene silencing efficiencies. Six types of cell penetrating peptides (CPPs; PeptFect220 (denoted PF220), PF221, PF222, PF223, PF224 and PF14) and three types of gene therapeutic agents (plasmid (pGL3), splicing correcting oligonucleotides (SCO), and small interfering RNA (siRNA) were investigated. Magnetic nanoparticles incorporated into the complexes of CPPs-pGL3, CPPs-SCO, and CPPs-siRNA showed high cell biocompatibility and efficiently transfected the investigated cells with pGL3, SCO, and siRNA, respectively. Gene transfer vectors formed among PF14, SCO, and MNPs (PF14-SCO-MNPs) showed a superior transfection efficiency (up to 4-fold) compared to the noncovalent PF14-SCO complex, which was previously reported with a higher efficiency compared to commercial vector called Lipofectamine™2000. The high transfection efficiency of the new complexes (CPPs-SCO-MNPs) may be attributed to the morphology, low cytotoxicity, and the synergistic effect of MNPs and CPPs. PF14-pDNA-MNPs is an efficient complex for in vivo gene delivery upon systemic administration. The conjugation of CPPs-ONs with inorganic magnetic nanoparticles (Fe3O4) may open new venues for selective and efficient gene therapy.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, Stockholm, SE-10691, Sweden.
| | - Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, SE-106 91, Sweden
| | - Mattias Hällbrink
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, Stockholm, SE-10691, Sweden
| | - Krista Freimann
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, Tartu, 50411, Estonia
| | - Kaido Kurrikoff
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, Tartu, 50411, Estonia
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, SE-106 91, Sweden.
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, Stockholm, SE-10691, Sweden.
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, Tartu, 50411, Estonia.
| |
Collapse
|
3
|
Bonvin D, Aschauer UJ, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Versatility of Pyridoxal Phosphate as a Coating of Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E202. [PMID: 28758913 PMCID: PMC5575684 DOI: 10.3390/nano7080202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the most important cofactor of vitamin B₆-dependent enzymes, which catalyses a wide range of essential body functions (e.g., metabolism) that could be exploited to specifically target highly metabolic cells, such as tumour metastatic cells. However, the use of PLP as a simultaneous coating and targeting molecule, which at once provides colloidal stability and specific biological effects has not been exploited so far. Therefore, in this work iron oxide nanoparticles (IONPs) were coated by PLP at two different pH values to tune PLP bonding (e.g., orientation) at the IONP surface. The surface study, as well as calculations, confirmed different PLP bonding to the IONP surface at these two pH values. Moreover, the obtained PLP-IONPs showed different zeta potential, hydrodynamic radius and agglomeration state, and consequently different uptake by two metastatic-prostate-cancer cell lines (LnCaP and PC3). In LnCaP cells, PLP modified the morphology of IONP-containing intracellular vesicles, while in PC3 cells PLP impacted the amount of IONPs taken up by cells. Moreover, PLP-IONPs displayed high magnetic resonance imaging (MRI) r₂ relaxivity and were not toxic for the two studied cell lines, rendering PLP promising for biomedical applications. We here report the use of PLP simultaneously as a coating and targeting molecule, directly bound to the IONP surface, with the additional high potential for MRI detection.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Ulrich J Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland.
| | - Jessica A M Bastiaansen
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| | - Heinrich Hofmann
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| |
Collapse
|
4
|
Bonvin D, Bastiaansen JA, Stuber M, Hofmann H, Mionić Ebersold M. Chelating agents as coating molecules for iron oxide nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra08217g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron oxide nanoparticles coated with chelating agents with different numbers of –COOH dentates (2 to 5) behave differently.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory
- Institute of Materials
- Ecole Polytechnique Fédérale de Lausanne
- Switzerland
| | - Jessica A. M. Bastiaansen
- Department of Radiology
- University Hospital (CHUV)
- University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
| | - Matthias Stuber
- Department of Radiology
- University Hospital (CHUV)
- University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
| | - Heinrich Hofmann
- Powder Technology Laboratory
- Institute of Materials
- Ecole Polytechnique Fédérale de Lausanne
- Switzerland
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory
- Institute of Materials
- Ecole Polytechnique Fédérale de Lausanne
- Switzerland
- Department of Radiology
| |
Collapse
|
5
|
Geinguenaud F, Guenin E, Lalatonne Y, Motte L. Vectorization of Nucleic Acids for Therapeutic Approach: Tutorial Review. ACS Chem Biol 2016; 11:1180-91. [PMID: 26950048 DOI: 10.1021/acschembio.5b01053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oligonucleotides present a high therapeutic potential for a wide variety of diseases. However, their clinical development is limited by their degradation by nucleases and their poor blood circulation time. Depending on the administration mode and the cellular target, these macromolecules will have to cross the vascular endothelium, to diffuse through the extracellular matrix, to be transported through the cell membrane, and finally to reach the cytoplasm. To overcome these physiological barriers, many strategies have been developed. Here, we review different methods of DNA vectorization, discuss limitations and advantages of the various vectors, and provide new perspectives for future development.
Collapse
Affiliation(s)
- Frederic Geinguenaud
- Laboratoire CSPBAT,
CNRS UMR 7244, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Erwann Guenin
- Inserm, U1148,
Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Yoann Lalatonne
- Inserm, U1148,
Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
- Service
de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris 93009 Bobigny France
| | - Laurence Motte
- Inserm, U1148,
Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| |
Collapse
|