1
|
Alanazi AA, Saber WIA, AlDamen MA, Elattar KM. Green synthesis, characterization, and multifunctional applications of Ag@CeO 2 and Ag@CeO 2-pullulan nanocomposites for dye degradation, antioxidant, and antifungal activities. Int J Biol Macromol 2024; 280:135862. [PMID: 39322159 DOI: 10.1016/j.ijbiomac.2024.135862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The synthesis and characterization of novel nanocomposites with unique properties have garnered significant interest. Ag@CeO2 nanocomposite and its pullulan counterparts were prepared using a green approach involving rosemary extract. Characterization techniques, including Fourier Transform Infrared Spectroscopy, UV-visible spectroscopy, zeta potential, Dynamic Light Scattering, High-Resolution Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, Scanning Electron Microscopy, and X-ray Diffraction, confirmed the formation of Ag@CeO2 nanoparticles (NPs). Pullulan led to increased particle size and improved homogeneity. Employing the Artificial Neural Networks (ANN) model to optimize methylene blue removal by Ag@CeO2 NPs and Ag@CeO2-pullulan NPs demonstrated predictive capabilities up to 97.53 % of MB removal (R2 = 0.9991). The antioxidant test demonstrated that rosemary extract exhibited the highest activity (IC50 = 0.011 mg/mL), then Ag@CeO2 NPs (IC50 = 0.039 mg/mL), and Ag@CeO2-pullulan NPs (IC50 = 0.041 mg/mL). Both Ag@CeO2 NPs and Ag@CeO2-pullulan NPs inhibited Candida albicans growth, with the latter exhibiting enhanced efficacy (MIC = 468.27, MFC = 936.53, and IC50 = 129.60 μg/mL). The study successfully synthesized novel Ag@CeO2-based nanocomposites coupled with pullulan with promising applications in dye removal, and antimicrobial therapy. The incorporation of pullulan improved the properties of the nanocomposites, enhancing their potential for practical use in environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdulaziz A Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| | - Murad A AlDamen
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Thomas N, Puluhulawa LE, Cindana Mo’o FR, Rusdin A, Gazzali AM, Budiman A. Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness. Polymers (Basel) 2024; 16:2151. [PMID: 39125177 PMCID: PMC11313896 DOI: 10.3390/polym16152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Pullulan, a natural polysaccharide with unique biocompatibility and biodegradability, has gained prominence in nanomedicine. Its application in nanoparticle drug delivery systems showcases its potential for precision medicine. AIM OF STUDY This scientific review aims to comprehensively discuss and summarize recent advancements in pullulan-based polymeric nanoparticles, focusing on their formulation, characterization, evaluation, and efficacy. METHODOLOGY A search on Scopus, PubMed, and Google Scholar, using "Pullulan and Nanoparticle" as keywords, identified relevant articles in recent years. RESULTS The literature search highlighted a diverse range of studies on the pullulan-based polymeric nanoparticles, including the success of high-selectivity hybrid pullulan-based nanoparticles for efficient boron delivery in colon cancer as the active targeting nanoparticle, the specific and high-efficiency release profile of the development of hyalgan-coated pullulan-based nanoparticles, and the design of multifunctional microneedle patches that incorporated pullulan-collagen-based nanoparticle-loaded antimicrobials to accelerate wound healing. These studies collectively underscore the versatility and transformative potential of pullulan-based polymeric nanoparticles in addressing biomedical challenges. CONCLUSION Pullulan-based polymeric nanoparticles are promising candidates for innovative drug delivery systems, with the potential to overcome the limitations associated with traditional delivery methods.
Collapse
Affiliation(s)
- Nurain Thomas
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (N.T.); (L.E.P.); (F.R.C.M.)
| | - Lisa Efriani Puluhulawa
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (N.T.); (L.E.P.); (F.R.C.M.)
| | - Faradila Ratu Cindana Mo’o
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (N.T.); (L.E.P.); (F.R.C.M.)
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| | - Amirah Mohd Gazzali
- Department Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, P.Penang, Penang 11800, Malaysia;
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
3
|
Kheirkhah S, Abedi M, Zare F, Salmanpour M, Abolmaali SS, Tamaddon AM. Surface engineered palmitoyl-mesoporous silica nanoparticles with supported lipid bilayer coatings for high-capacity loading and prolonged release of dexamethasone: A factorial design approach. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Precise delivery of doxorubicin and imiquimod through pH-responsive tumor microenvironment-active targeting micelles for chemo- and immunotherapy. Mater Today Bio 2022; 17:100482. [DOI: 10.1016/j.mtbio.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
5
|
Lim C, Shin Y, Lee S, Lee S, Lee MY, Shin BS, Oh KT. Dynamic drug release state and PEG length in PEGylated liposomal formulations define the distribution and pharmacological performance of drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Harris R. The PEGylated and non-PEGylated interaction of the anticancer drug 5-fluorouracil with paramagnetic Fe3O4 nanoparticles as drug carrier. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Khan B, Nawaz M, Price GJ, Hussain R, Baig A, Haq S, Rehman W, Waseem M. In vitro sustained release of gallic acid from the size-controlled PEGylated magnetite nanoparticles. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01724-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Hydrophobically Grafted Pullulan Nanocarriers for Percutaneous Delivery: Preparation and Preliminary In Vitro Characterisation. Polymers (Basel) 2021; 13:polym13172852. [PMID: 34502895 PMCID: PMC8434112 DOI: 10.3390/polym13172852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/27/2022] Open
Abstract
Polymeric colloidal nanocarriers formulated from hydrophobically grafted carbohydrates have been the subject of intensive research due to their potential to increase the percutaneous penetration of hydrophilic actives. To this goal, a series of hydrophobically grafted pullulan (BMO-PUL) derivatives with varying degree of grafting (5–64%) was prepared through functionalisation with 2-(butoxymethyl)oxirane. The results demonstrated that monodispersed BMO-PUL nanocarriers (size range 125–185 nm) could be easily prepared via nanoprecipitation; they exhibit close-to-spherical morphology and adequate stability at physiologically relevant pH. The critical micellar concentration of BMO-PUL was found to be inversely proportional to their molecular weight (Mw) and degree of grafting (DG), with values of 60 mg/L and 40 mg/L for DG of 12.6% and 33.8%, respectively. The polymeric nanocarriers were loaded with the low Mw hydrophilic active α-arbutin (16% loading), and the release of this active was studied at varying pH values (5 and 7), with a slightly faster release observed in acidic conditions; the release profiles can be best described by a first-order kinetic model. In vitro investigations of BMO-PUL nanocarriers (concentration range 0.1–4 mg/mL) using immortalised skin human keratinocytes cells (HaCaT) evidenced their lack of toxicity, with more than 85% cell viability after 24 h. A four-fold enhance in arbutin permeation through HaCaT monolayers was recorded when the active was encapsulated within the BMO-PUL nanocarriers. Altogether, the results obtained from the in vitro studies highlighted the potential of BMO-PUL nanocarriers for percutaneous delivery applications, which would warrant further investigation in vivo.
Collapse
|
9
|
Güngör A, Demir D, Bölgen N, Özdemir T, Genç R. Dual stimuli-responsive chitosan grafted poly(NIPAM-co-AAc)/poly(vinyl alcohol) hydrogels for drug delivery applications. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1765355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmet Güngör
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Didem Demir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Nimet Bölgen
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Tonguç Özdemir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Rükan Genç
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
10
|
Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res 2021; 10:766-790. [PMID: 32170656 DOI: 10.1007/s13346-020-00744-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomedicine is a rapidly emerging field with several breakthroughs in the therapeutic drug delivery application. The unique properties of the nanoscale delivery systems offer huge advantages to their payload such as solubilization, increased bioavailability, and improved pharmacokinetics with an overall goal of enhanced therapeutic index. Nanomedicine has the potential for integrating and enabling new therapeutic modalities. Several nanoparticle-based drug delivery systems have been granted approval for clinical use based on their outstanding clinical outcomes. Nanomedicine faces several challenges that hinder the realization of its full potential. In this review, we discuss the critical formulation- and biological-related quality features that significantly influence the performance of nanoparticulate systems in vivo. We also discuss the quality-by-design approach in the pharmaceutical manufacturing and its implementation in the nanomedicine. A deep understanding of these nanomedicine quality checkpoints and a systematic design that takes them into consideration will hopefully expedite the clinical translation process. Graphical abstract.
Collapse
|
11
|
Trital A, Xue W, Chen S. Development of a Negative-Biased Zwitterionic Polypeptide-Based Nanodrug Vehicle for pH-Triggered Cellular Uptake and Accelerated Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7181-7189. [PMID: 32551657 DOI: 10.1021/acs.langmuir.0c00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Albumin mimics could be an attractive platform for nanodrug carriers through systematic administration because of high safety and plentiful properties to be adjusted for a high drug efficacy, such as pH-triggered targeting cellular uptake and drug release. In this work, negative-biased zwitterionic nanodrug carriers based on zwitterionic polypeptide chains that mimic albumin were prepared, which have an outermost layer of zwitterionic glutamic acid (E) and lysine (K) pairs with a small amount of aspartic acid (D) to adjust the overall ζ potential. On the other hand, doxorubicin (Dox) was encapsulated in a hydrophobic core by 11-maleimidoundecanoic acid covalently linked with additional cysteine (C) residues on the polypeptide. The results show that the negative-biased zwitterionic nanodrug carriers can sensitively enhance the cellular uptake in responding to a pH change from 7.4 to 6.7 without reversing the ζ potential to a positive charge, leading to accelerating the Dox release rate in a slightly acidic environment through the polypeptide secondary structure change. Moreover, the anionic nanodrug carrier can also be easily enzymatically digested by trypsin for quick drug release. In short, this negative-biased zwitterionic nanodrug delivery vector could be an ideal candidate for a safer tumor inhibition with a high efficacy than conventional synthetic polymer-based ones.
Collapse
Affiliation(s)
- Ashish Trital
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Weili Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
12
|
Development and validation of a thermal desorber gas chromatography method for determination of residual solvents in drug loaded albumin. J Pharm Biomed Anal 2020; 179:113032. [PMID: 31830626 DOI: 10.1016/j.jpba.2019.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 11/21/2022]
Abstract
The conventional approach for residual solvent (RS) analysis is headspace-gas chromatography (HS-GC). This starts from a homogenous sample solution and is based on the equilibrium of the analyte between the sample and the gas phase. Unfortunately, aqueous solutions of albumin form irreversible hydrophobic aggregates when heated above 50 °C. Consequently, the use of HS-GC for RS analysis in albumin becomes problematic due to the presence of an additional solid phase in the HS vial. In this work, a method using a thermal desorber (TD) combined with GC was developed for the determination of RS in drug loaded albumin. Samples were immobilized between two double layers of quartz filter (QF) in a polytetrafluoroethylene (PTFE) insert which was placed in an empty desorption tube prior to TD-GC analysis. The liquid standard mix consisted of ethanol (EtOH), acetone (Ace), dichloromethane (DCM) and chloroform (Chl) dissolved in toluene. Offline liquid calibration (OLC) was applied by introducing 2 μL of the standard mix under counter flow of an inert gas into the TD tube containing a mixed bed of mesoporous silica (MPSi) immobilized between two double layers of QF. The OLC results were verified using the inline liquid calibration (ILC) approach based on a heated GC injector installed on the TD. The validation results revealed that the proposed method has good recovery (> 98 %). R2-values (> 0.998) indicated good linearity over a wide range. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.01 and 0.04 μg on tube, respectively. Repeatability of the method was reported as RSD-values and they were lower than 3 %. A method based on the complete enzymatic digestion of albumin combined with conventional HS-GC was developed to verify the completeness of release of the RS from the albumin. Both the TD-GC and HS-GC methods were applied for the determination of EtOH and DCM in two different albumin samples loaded with experimental drugs. Statistical comparison indicated that there was no significant difference (p > 0.05) between the two methods. However, the HS-GC method following enzymatic degradation is much more expensive and time consuming.
Collapse
|
13
|
Wu D, Chen Y, Wen S, Wen Y, Wang R, Zhang Q, Qin G, Yi H, Wu M, Lu L, Tao X, Deng X. Synergistically Enhanced Inhibitory Effects of Pullulan Nanoparticle-Mediated Co-Delivery of Lovastatin and Doxorubicin to Triple-Negative Breast Cancer Cells. NANOSCALE RESEARCH LETTERS 2019; 14:314. [PMID: 31520223 PMCID: PMC6744545 DOI: 10.1186/s11671-019-3146-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/30/2019] [Indexed: 05/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is prone to drug resistance and difficult to treat. In this study, we grafted water-soluble pullulan with lovastatin (LV) to develop a novel amphiphilic conjugate, pullulan-encapsulated LV (PLV). The PLV conjugate was synthesized with three different ratios of pullulan to LV and characterized by Fourier transform infrared (FTIR). The degree of substitution (DS) of LV in terms of molar ratio was 7.87%, 3.58%, and 3.06% for PLV (1/2), PLV (1/3), and PLV (1/4), respectively, by proton NMR analysis. We selected the PLV (1/2) conjugate to prepare doxorubicin (DXR)-loaded PLV nanoparticles (PLV/DXR NPs) because of its superior properties. The average size and zeta potential for PLV (1/2) NPs were 177.6 nm and - 11.66 mV, respectively, determined by dynamic light scattering, and those for PLV/DXR NPs were 225.6 nm and - 10.51 mV, respectively. In vitro drug release profiling showed that PLV/DXR NPs sustainably released DXR within 72 h, which was more robust at pH 5.4 (97.90%) than pH 7.4 (76.15%). In the cytotoxicity study, PLV/DXR NPs showed greater inhibition of proliferation of TNBC MDA-MB-231 than non-TNBC MDA-MB-453 cells (IC50 0.60 vs 11.05 μM). FITC-loaded PLV/DXR NPs were prepared to investigate cellular uptake: both cell lines showed a time-dependent uptake of NPs, but the number of NPs entering MDA-MB-231 cells was greater than that entering the MDA-MB-453 cells. Pullulan-based NP co-delivery of LV and DXR could efficiently inhibit TNBC cells, which may help in designing a powerful drug delivery system for treating TNBC.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Yao Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Shun Wen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Yi Wen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Rong Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Qiuting Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Ge Qin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Huimei Yi
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Basic Medical Sciences, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Basic Medical Sciences, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Basic Medical Sciences, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China.
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Basic Medical Sciences, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
Liu G, Lin G, Lin X, Zhou H, Chen H, Hao L, Zhou X. Enzyme and pH dual-responsive avermectin nano-microcapsules for improving its efficacy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25107-25116. [PMID: 31254196 DOI: 10.1007/s11356-019-05804-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
The overdosage use of pesticide was harmful to the environment and human health, which was mainly caused by the low utilization rate of the pesticide. However, the pesticide microcapsule with sustained-release and stimulating response properties could effectively solve this problem. Preparation of carboxymethyl cellulose grafting dimethyldiallylammonium chloride (CMC-g-PDMDAAC) through grafting polymerization and trapping as well as encapsulation of avermectin (AVM) via electrostatic interactions resulted in the formation of AVM/CMC-g-PDMDAAC microcapsules. The results showed that the particle size was 200~300 nm. The encapsulation efficiency was as high as 72.06%. Furthermore, the remaining rate of encapsulated AVM increased from 50.0 to 81.60% after UV irradiation for 359 min. The microcapsules exhibited significant enzyme and pH stimuli responsiveness. Finally, CMC-g-PDMDAAC had no significant difference effect on the toxicity of AVM, AVM could be found, and DMDAAC featured a synergistic effect on the toxicological effects of AVM. Graphical abstract.
Collapse
Affiliation(s)
- Guanghua Liu
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- Shaoguan Huashi Innovational Research Institute for Modern Agriculture, Shaoguan, People's Republic of China
| | - Guanquan Lin
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Xida Lin
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Hongjun Zhou
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Guangzhou, People's Republic of China.
| | - Huayao Chen
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Guangzhou, People's Republic of China
| | - Li Hao
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Bhattacharya K, Banerjee SL, Das S, Samanta S, Mandal M, Singha NK. REDOX Responsive Fluorescence Active Glycopolymer Based Nanogel: A Potential Material for Targeted Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2019; 2:2587-2599. [DOI: 10.1021/acsabm.9b00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Tao X, Tao T, Wen Y, Yi J, He L, Huang Z, Nie Y, Yao X, Wang Y, He C, Yang X. Novel Delivery of Mitoxantrone with Hydrophobically Modified Pullulan Nanoparticles to Inhibit Bladder Cancer Cell and the Effect of Nano-drug Size on Inhibition Efficiency. NANOSCALE RESEARCH LETTERS 2018; 13:345. [PMID: 30377872 PMCID: PMC6207605 DOI: 10.1186/s11671-018-2769-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/21/2018] [Indexed: 06/01/2023]
Abstract
Reducing the dosage of chemotherapeutic drugs via enhancing the delivery efficiency using novel nanoparticles has great potential for cancer treatment. Here, we focused on improving mitoxantrone delivery by using cholesterol-substituted pullulan polymers (CHPs) and selected a suitable nano-drug size to inhibit the growth of bladder cancer cells. We synthesized three kinds of CHPs, named CHP-1, CHP-2, CHP-3. Their chemical structures were identified by NMR, and the degree of cholesterol substitution was 6.82%, 5.78%, and 2.74%, respectively. Their diameters were 86.4, 162.30, and 222.28 nm. We tested the release rate of mitoxantrone in phosphate-buffered saline for 48 h: the release rate was 38.73%, 42.35%, and 58.89% for the three CHPs. The hydrophobic substitution degree in the polymer was associated with the self-assembly process of the nanoparticles, which affected their size and therefore drug release rate. The release of the three drug-loaded nanoparticles was significantly accelerated in acid release media. The larger the nanoparticle, the greater the drug release velocity. At 24 h, the IC50 value was 0.25 M, for the best inhibition of mitoxantrone on bladder cancer cells.3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) experiments demonstrated that drug-loaded CHP-3 nanoparticles with the largest size were the most toxic to bladder cancer cells. Immunofluorescence and flow cytometry revealed that drug-loaded CHP-3 nanoparticles with the largest size had the strongest effect on promoting apoptosis of bladder cancer cells. Also, the three drug-loaded nanoparticles could all inhibit the migration of MB49 cells, with large-size CHP-3 nanoparticles having the most powerful inhibition.
Collapse
Affiliation(s)
- Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Ting Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Yi Wen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Jiajin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Lihua He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Zixuan Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Yu Nie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Xiaoyan Yao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Yingying Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Chunlian He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013 China
| |
Collapse
|
17
|
Yuan L, Cao Y, Luo Q, Yang W, Wu X, Yang X, Wu D, Tan S, Qin G, Zhou J, Zeng Y, Chen X, Tao X, Zhang Q. Pullulan-Based Nanoparticle-HSA Complex Formation and Drug Release Influenced by Surface Charge. NANOSCALE RESEARCH LETTERS 2018; 13:317. [PMID: 30306404 PMCID: PMC6179976 DOI: 10.1186/s11671-018-2729-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The nanomaterial composition of nanoparticles and their protein adsorption in the blood is of great significance in the design of drug-loaded nanoparticles. To explore the interaction between the different surface components of nanoparticles (NPs) and protein, we synthesized three kinds of pullulan NP polymers: cholesteric hydrophobically (CH) modified pullulan (CHP), CH-modified animated pullulan (CHAP), and CH-modified carboxylated pullulan (CHSP). Pullulan NPs were prepared by the dialysis method. Dynamic light scattering was used to determine the charge and size of the three NPs. The size of NPs was altered by the number of charge groups when polymers contain the same degree of cholesterol substitution. The zeta potentials were + 12.9, - 15.4, and - 0.698 mV for CHAP, CHSP, and CHP, respectively, and the dimensions were 116.9, 156.9, and 73.1 nm, respectively. Isothermal titration calorimetry was used to determine the thermodynamic changes of NPs with different surface charge, and the effect of human serum albumin (HSA) on the titration was investigated. The changes of enthalpy and entropy demonstrated an interaction between NPs and HSA; the binding constant (Kb) for CHSP, CHP, and CHAP was 1.41, 27.7, and 412 × 104 M-1, respectively, with the positive charge for CHAP-HSA, uncharged for CHP-HSA, and negative charge for CHSP-HSA complex. Fluorescence and circular dichroism spectroscopy were used to determine the protein structure change after the complexation between NPs and HSA. The NP and HSA complexation is a complicated process composed of protein α-helical content reduction and the peptide chain extension; CHP NPs had the largest reduction in HSA α-helical content. The drug release rates of all compounds of NP and HSA were significantly lower than those of free drug and drug-loaded NPs after 48 h. The highest and lowest rates were observed in CHSP-HSA and CHP-HSA, respectively. The drug release was significantly influenced by the adsorption of HSA on NPs, and the size and surface charge of NPs played an important role in this process.
Collapse
Affiliation(s)
- Liming Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Yiting Cao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Qian Luo
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Wenyu Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Xiaofeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Di Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Siyuan Tan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Ge Qin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Jia Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Yue Zeng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Xinghua Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Xiaojun Tao
- Department of Pharmacology, Hubei University of Medicine, Shiyan, 442000 Hubei China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 China
| | - Qiufang Zhang
- Department of Pharmacology, Hubei University of Medicine, Shiyan, 442000 Hubei China
| |
Collapse
|
18
|
Gurnani P, Sanchez-Cano C, Abraham K, Xandri-Monje H, Cook AB, Hartlieb M, Lévi F, Dallmann R, Perrier S. RAFT Emulsion Polymerization as a Platform to Generate Well-Defined Biocompatible Latex Nanoparticles. Macromol Biosci 2018; 18:e1800213. [PMID: 30085410 DOI: 10.1002/mabi.201800213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Indexed: 12/17/2022]
Abstract
Current approaches to generate core-shell nanoparticles for biomedical applications are limited by factors such as synthetic scalability and circulatory desorption of cytotoxic surfactants. Developments in controlled radical polymerization, particularly in dispersed states, represent a promising method of overcoming these challenges. In this work, well-defined PEGylated nanoparticles are synthesized using reversible addition fragmentation chain transfer emulsion polymerization to control particle size and surface composition and were further characterized with light scattering, electron microscopy, and size exclusion chromatography. Importantly, the nanoparticles are found to be tolerated both in vitro and in vivo, without the need for any purification after particle synthesis. Pharmacokinetic and biodistribution studies in mice, following intraperitoneal injection of the nanoparticles, reveal a long (>76 h) circulation time and accumulation in the liver.
Collapse
Affiliation(s)
- Pratik Gurnani
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Kristin Abraham
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Helena Xandri-Monje
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Alexander B Cook
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Matthias Hartlieb
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Francis Lévi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
19
|
Liu Q, Chen F, Hou L, Shen L, Zhang X, Wang D, Huang L. Nanocarrier-Mediated Chemo-Immunotherapy Arrested Cancer Progression and Induced Tumor Dormancy in Desmoplastic Melanoma. ACS NANO 2018; 12:7812-7825. [PMID: 30016071 PMCID: PMC6115293 DOI: 10.1021/acsnano.8b01890] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In desmoplastic melanoma, tumor cells and tumor-associated fibroblasts are the major dominators playing a critical role in the fibrosis morphology as well as the immunosuppressive tumor microenvironment (TME), compromising the efficacy of therapeutic options. To overcome this therapeutic hurdle, we developed an innovative chemo-immunostrategy based on targeted delivery of mitoxantrone (MIT) and celastrol (CEL), two potent medicines screened and selected with the best anticancer and antifibrosis potentials. Importantly, CEL worked in synergy with MIT to induce immunogenic tumor cell death. Here, we show that when effectively co-delivered to the tumor site at their optimal ratio by a TME-responsive nanocarrier, the 5:1 combination of MIT and CEL significantly triggered immunogenic tumor apoptosis and recovered tumor antigen recognition, thus eliciting overall antitumor immunity. Furthermore, the strong synergy benefitted the host in reduced drug exposure and side effects. Collectively, the nanocarrier-mediated chemo-immunotherapy successfully remodeled fibrotic and immunosuppressive TME, arrested cancer progression, and further inhibited tumor metastasis to major organs. The affected tumors remained dormant long after dosing stopped, resulting in a prolonged progression-free survival and sustained immune surveillance of the host bearing desmoplastic melanoma.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) and the Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79416, USA
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xueqiong Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Degeng Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) and the Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79416, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 2018; 168:64-75. [DOI: 10.1016/j.biomaterials.2018.03.046] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/23/2022]
|
21
|
Sun H, Liu Y, Bai X, Zhou X, Zhou H, Liu S, Yan B. Induction of oxidative stress and sensitization of cancer cells to paclitaxel by gold nanoparticles with different charge densities and hydrophobicities. J Mater Chem B 2018; 6:1633-1639. [PMID: 32254279 DOI: 10.1039/c7tb03153j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An elevated reactive oxygen species (ROS) level leads to cellular oxidative stress, which has long been associated with diseases, such as cancer. Thus, the understanding and appropriate manipulation of cellular oxidative stress are needed for disease treatment. It has been reported that nanoparticles induce oxidative stress in human cells through different pathways. However, how the physicochemical properties of nanoparticles perturb cellular oxidative stress remains unclear. In this paper, we explored the effects of the positive/negative charge density and hydrophobicity of gold nanoparticles (GNPs) on the induction of oxidative stress and related mechanisms. In multiple human cell lines, we found that only the positive charge density and hydrophobicity of nanoparticles were correlated with the induction of cellular oxidative stress. Hydrophobic nanoparticles generated oxidative stress mainly through NADPH oxidase activation while positively charged nanoparticles generated it through perturbations of the mitochondria and modulation of intracellular Ca2+ concentration. Furthermore, nanoparticle-induced oxidative stress sensitized paclitaxel-induced cancer cell killing by 200%. These findings provided unequivocal structural parameters for the design of future nanomedicine and biocompatible nanocarriers.
Collapse
Affiliation(s)
- Hainan Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Whang CH, Kim KS, Bae J, Chen J, Jun HW, Jo S. Novel Biodegradable Polymer with Redox-Triggered Backbone Cleavage Through Sequential 1,6-Elimination and 1,5-Cyclization Reactions. Macromol Rapid Commun 2017; 38. [PMID: 28833950 DOI: 10.1002/marc.201700395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Indexed: 01/10/2023]
Abstract
In the past decade, the self-immolative biodegradable polymer arose as a novel paradigm for its efficient degradation mechanism and vast potential for advanced biomedical applications. This study reports successful synthesis of a novel biodegradable polymer capable of self-immolative backbone cleavage. The monomer is designed by covalent conjugations of both pendant redox-trigger (p-nitrobenzyl alcohol) and self-immolative linker (p-hydroxybenzyl alcohol) to the cyclization spacer (n-2-(hydroxyethyl)ethylene diamine), which serves as the structural backbone. The polymerization of the monomer with hexamethylene diisocyanate yields a linear redox-sensitive polymer that can systemically degrade via sequential 1,6-elimination and 1,5-cyclization reactions within an effective timeframe. Ultimately, the polymer's potential for biomedical application is simulated through in vitro redox-triggered release of paclitaxel from polymeric nanoparticles.
Collapse
Affiliation(s)
- Chang-Hee Whang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Kyeong Soo Kim
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Jungeun Bae
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Seongbong Jo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
23
|
Tao X, Xie Y, Zhang Q, Qiu X, Yuan L, Wen Y, Li M, Yang X, Tao T, Xie M, Lv Y, Wang Q, Feng X. Cholesterol-Modified Amino-Pullulan Nanoparticles as a Drug Carrier: Comparative Study of Cholesterol-Modified Carboxyethyl Pullulan and Pullulan Nanoparticles. NANOMATERIALS 2016; 6:nano6090165. [PMID: 28335293 PMCID: PMC5224631 DOI: 10.3390/nano6090165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/14/2016] [Accepted: 08/30/2016] [Indexed: 01/07/2023]
Abstract
To search for nano-drug preparations with high efficiency in tumor treatment, we evaluated the drug-loading capacity and cell-uptake toxicity of three kinds of nanoparticles (NPs). Pullulan was grafted with ethylenediamine and hydrophobic groups to form hydrophobic cholesterol-modified amino-pullulan (CHAP) conjugates. Fourier transform infrared spectroscopy and nuclear magnetic resonance were used to identify the CHAP structure and calculate the degree of substitution of the cholesterol group. We compared three types of NPs with close cholesterol hydrophobic properties: CHAP, cholesterol-modified pullulan (CHP), and cholesterol-modified carboxylethylpullulan (CHCP), with the degree of substitution of cholesterol of 2.92%, 3.11%, and 3.46%, respectively. As compared with the two other NPs, CHAP NPs were larger, 263.9 nm, and had a positive surface charge of 7.22 mV by dynamic light-scattering measurement. CHAP NPs showed low drug-loading capacity, 12.3%, and encapsulation efficiency of 70.8%, which depended on NP hydrophobicity and was affected by surface charge. The drug release amounts of all NPs increased in the acid media, with CHAP NPs showing drug-release sensitivity with acid change. Cytotoxicity of HeLa cells was highest with mitoxantrone-loaded CHAP NPs on MTT assay. CHAP NPs may have potential as a high-efficiency drug carrier for tumor treatment.
Collapse
Affiliation(s)
- Xiaojun Tao
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Yongchao Xie
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Qiufang Zhang
- Department of Pharmacology, Hubei University of Medicine, Shiyan 442000, China.
| | - Ximin Qiu
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Liming Yuan
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Yi Wen
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Min Li
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Xiaoping Yang
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Ting Tao
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Minghui Xie
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Yanwei Lv
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Qinyi Wang
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Xing Feng
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
24
|
Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E125. [PMID: 28335253 PMCID: PMC5224599 DOI: 10.3390/nano6070125] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/19/2023]
Abstract
The development of smart nanocarriers for the delivery of therapeutic drugs has experienced considerable expansion in recent decades, with the development of new medicines devoted to cancer treatment. In this respect a wide range of strategies can be developed by employing liposome nanocarriers with desired physico-chemical properties that, by exploiting a combination of a number of suitable soft interactions, can facilitate the transit through the biological barriers from the point of administration up to the site of drug action. As a result, the materials engineer has generated through the bottom up approach a variety of supramolecular nanocarriers for the encapsulation and controlled delivery of therapeutics which have revealed beneficial developments for stabilizing drug compounds, overcoming impediments to cellular and tissue uptake, and improving biodistribution of therapeutic compounds to target sites. Herein we present recent advances in liposome drug delivery by analyzing the main structural features of liposome nanocarriers which strongly influence their interaction in solution. More specifically, we will focus on the analysis of the relevant soft interactions involved in drug delivery processes which are responsible of main behaviour of soft nanocarriers in complex physiological fluids. Investigation of the interaction between liposomes at the molecular level can be considered an important platform for the modeling of the molecular recognition processes occurring between cells. Some relevant strategies to overcome the biological barriers during the drug delivery of the nanocarriers are presented which outline the main structure-properties relationships as well as their advantages (and drawbacks) in therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Domenico Lombardo
- National Research Council, Institute for Chemical and Physical Processes, Messina 98158, Italy.
| | - Pietro Calandra
- National Research Council, Institute of Nanostructured Materials, Roma 00015, Italy.
| | - Davide Barreca
- Department of Chemical Sciences, biological, pharmaceutical and environmental, University of Messina, Messina 98166, Italy.
| | - Salvatore Magazù
- Department of Physics and Earth Sciences, University of Messina, Messina 98166, Italy.
| | - Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow 141980, Russia.
| |
Collapse
|