1
|
Zhang X, Wang X, Xu J, Wang T. Development and evaluation of a liposome hydrogel system for enhanced delivery of drospirenone at higher doses. J Biomater Appl 2025; 39:840-854. [PMID: 39630005 DOI: 10.1177/08853282241305516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Drospirenone (DROP) is a highly effective, low-toxicity, safe new generation progestin that counteracts estrogen-related sodium retention, is well tolerated, and has a positive effect on premenstrual syndrome (PMS). However, the low water solubility of DROP and its chemical instability resulted in low bioavailability. In this study, we developed a two-step delivery system to enhance drospirenone's solubility and stability. We prepared a drospirenone liposome complex to optimize the encapsulation process and achieve an encapsulation efficiency of (84.9 ± 0.73) %, with an 878-fold increase in solubility under optimal conditions. To address the instability of high drug-loading liposomes, we immobilized the drospirenone liposome inclusion complex using a cellulose-based hydrogel. The system achieved uniform loading of liposomes in the hydrogel, as confirmed by SEM and FTIR analysis. 0.5 g hydrogel can be loaded with up to 96.48 mg drospirenone, and the encapsulation efficiency is (80.4 ± 1.17%). It was indicating the potential for wider application of drospirenone with enhanced water solubility and improved stability. At the same time, it also provides support for sustained-release systems or large dose drug delivery.
Collapse
Affiliation(s)
- Xuena Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Heilongjiang, People's Republic of China
| | - Xuehan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Heilongjiang, People's Republic of China
| | - Juan Xu
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Heilongjiang, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Heilongjiang, People's Republic of China
| |
Collapse
|
2
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Wu Q, Cai P, Long L. Effect of Content and Size of Reinforcements on the Grain Evolution of Graphene-Reinforced Aluminum Matrix Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2550. [PMID: 34684991 PMCID: PMC8539807 DOI: 10.3390/nano11102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Graphene-reinforced aluminum matrix composites (GRAMCs) attract great interest in industries due to their high performance potential. High-temperature processes such as sintering and aging are usually applied during the preparation of GRAMCs, leading to grain coarsening that significantly influences its properties. In this work, a modified 3D Monte Carlo Potts model was proposed to investigate the effect of content and size of graphene on the grain evolution during the heat treatment of GRAMCs. Grain growth with graphene contents from 0.5 wt.% to 4.5 wt.% and sizes from 5 μm to 15 μm were simulated. The grain growth process, final grain size and morphology of the microstructure were predicted. The results indicated that both the content and size of the reinforcements had an impact on the grain evolution. The pinning effect of grain size can be enhanced by increasing the content and decreasing the size of graphene. Agglomeration and self-contacting phenomena of the graphene arose obviously when the contents and sizes were relatively high. The average grain size decreased by 48.77% when the content increased from 0.5 wt.% to 4.5 wt.%. The proposed method and predicted regulations can provide a reference for the design and fabrication of GRAMCs.
Collapse
Affiliation(s)
- Qi Wu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China;
| | | | - Lianchun Long
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China;
| |
Collapse
|
4
|
Kumari S, Sharma N, Sahi SV. Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics 2021; 13:1174. [PMID: 34452135 PMCID: PMC8398544 DOI: 10.3390/pharmaceutics13081174] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
In this review, advancement in cancer therapy that shows a transition from conventional thermal therapies to laser-based photothermal therapies is discussed. Laser-based photothermal therapies are gaining popularity in cancer therapeutics due to their overall outcomes. In photothermal therapy, light is converted into heat to destruct the various types of cancerous growth. The role of nanoparticles as a photothermal agent is emphasized in this review article. Magnetic, as well as non-magnetic, nanoparticles have been effectively used in the photothermal-based cancer therapies. The discussion includes a critical appraisal of in vitro and in vivo, as well as the latest clinical studies completed in this area. Plausible evidence suggests that photothermal therapy is a promising avenue in the treatment of cancer.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, KY 42101-1080, USA;
| | - Shivendra V. Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| |
Collapse
|
5
|
Chen X, Tian Y. Review of Graphene in Cathode Materials for Lithium-Ion Batteries. ENERGY & FUELS 2021; 35:3572-3580. [DOI: 10.1021/acs.energyfuels.0c04191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, People’s Republic of China
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning 121001, People’s Republic of China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, People’s Republic of China
| | - Yue Tian
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning 121001, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Leng S, Huang J, Shu M, Papavassiliou DV. Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3275. [PMID: 31680480 DOI: 10.1002/cnm.3275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Photothermal therapy using near-infrared radiation and local heating agents can induce selective tumor ablation with limited harm to the surrounding normal tissue. Graphene sheets are promising local heating agents because of their strong absorbance of near-infrared radiation. Experimental studies have been conducted to study the heating effect of graphene in photothermal therapy, yet few efforts have been devoted to the quantitative understanding of energy conversion and transport in such systems. Herein, a computational study of cancer photothermal therapy using near-infrared radiation and graphene is presented using a Monte Carlo approach. A three-dimensional model was built with a cancer cell inside a cube of healthy tissue. Functionalized graphene nanosheets were randomly distributed on the surface of the cancer cell. The effects of the concentration and morphology of the graphene nanosheets on the thermal behavior of the system were quantitatively investigated. The interfacial thermal resistance around the graphene sheets, which affects the transfer of heat in the nanoscale, was also varied to probe its effect on the temperature increase of the cancer cell and the healthy tissue. The results of this study could guide researchers to optimize photothermal therapy with graphene, while the modeling approach has the potential to be applied for investigating alternative treatment plans.
Collapse
Affiliation(s)
- Yijuan Wang
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Sha Leng
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jigang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Mingyang Shu
- Department of Stomatology, Huai'an Second People's Hospital, Huai'an Hospital of XuzhouMedical University, Huai'an, China
| | | |
Collapse
|
7
|
Recent Advances in Graphene-Based Free-Standing Films for Thermal Management: Synthesis, Properties, and Applications. COATINGS 2018. [DOI: 10.3390/coatings8020063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Chen Z, Wang T, Yan Q. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:309-324. [PMID: 29219743 DOI: 10.1080/09205063.2017.1415583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.
Collapse
Affiliation(s)
- Zhi Chen
- a Department of Chemistry, College of Science , Northeast Forestry University , Harbin , P.R. China
| | - Ting Wang
- a Department of Chemistry, College of Science , Northeast Forestry University , Harbin , P.R. China
| | - Qing Yan
- a Department of Chemistry, College of Science , Northeast Forestry University , Harbin , P.R. China
| |
Collapse
|