1
|
Savdenbekova B, Seidulayeva A, Sailau A, Bekissanova Z, Rakhmatullayeva D, Jumagaziyeva A. Investigation of Antibacterial Coatings Based on Chitosan/Polyacrylic Acid/Chlorhexidine for Orthopedic Implants. ACS POLYMERS AU 2024; 4:498-511. [PMID: 39679059 PMCID: PMC11638784 DOI: 10.1021/acspolymersau.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 12/17/2024]
Abstract
Antibacterial coatings on model silicon wafers and implants, based on chitosan (CHI), poly(acrylic acid) (PAA), and the antibacterial agent chlorhexidine digluconate (CHX), were obtained using a layer-by-layer assembly method. The surface roughness and 2D and 3D images of the surfaces of CHI/PAA/CHX coatings obtained from different pH assemblies were investigated by atomic force microscopy, revealing that pH 6 enabled optimal inclusion of CHX in the multilayer film. The structure and elemental composition before and after implementation of CHX into the coating were investigated via scanning electron microscopy and energy-dispersive X-ray spectroscopy. The obtained films exhibited antimicrobial efficacy against Staphylococcus aureus and Staphylococcus epidermidis. The effects of CHX concentration and duration of contact with the coating on bacterial activity were investigated, and the quantitative release of CHX from coated implants in phosphate buffer was determined as a function of the incubation time. The biocompatibility of the PAA/CHI/CHX coatings was investigated using human mononuclear cells (HMNCs) and quantified using an MTT assay. HMNCs demonstrated high viability in eluted solutions obtained from implants coated with PAA/CHI/CHX (0.025%) and PAA/CHI/CHX (0.0125%), while the extract of implants coated with PAA/CHI/CHX (0.05%) induced slight cytotoxicity.
Collapse
Affiliation(s)
- Balzhan Savdenbekova
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Ayazhan Seidulayeva
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Aruzhan Sailau
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Zhanar Bekissanova
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Dilafruz Rakhmatullayeva
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | | |
Collapse
|
2
|
Li J, Wu X, Liang Z, Wei Z, Chen Z, Wang Y, Li W, Zhang W, Yang R, Qiu H, Li X, Li Q, Chen J. A programmed surface on dental implants sequentially initiates bacteriostasis and osseointegration. Colloids Surf B Biointerfaces 2023; 230:113477. [PMID: 37544027 DOI: 10.1016/j.colsurfb.2023.113477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Osteogenesis surrounding dental implants is initiated by a series of early physiological events, including the inflammatory response. However, the persistence of an anti-infection surface often results in compromised histocompatibility and osseointegration. Here, we presented a programmed surface containing both silver nanoparticles (AgNPs) and silver ions (Ag+) with a heterogeneous structure and time-dependent functionalities. The AgNPs were located at the surface of the heparin-chitosan polyelectrolyte coating (PEM), whereas Ag+ was distributed at both the surface and inside of the coating under optimized conditions (pH=4). The optimized coating (Ag-4) exhibited potent bactericidal activity at the early stage (12 and 24 h after inoculation) and a sustained antibacterial efficacy in the subsequent stage (one or two weeks), as it gradually depleted. Furthermore, compared to coatings with sustained high silver concentrations in bacteria-cell coculture experiments, the degradable Ag-4 coating demonstrated improved cytocompatibility, better cell viability, and morphology over time. At a later stage (within one month), the in vivo test revealed that Ag-4-coated titanium had superior histocompatibility and osteogenesis outcomes compared to bare titanium in a bacteria-exposed environment. The programmed surface of dental implants presented in this study offers innovative ideas for sequential antibacterial effects and osseointegration.
Collapse
Affiliation(s)
- Jiaojiao Li
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoqin Wu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Zhaojia Liang
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Zhangao Wei
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Zirui Chen
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Yankai Wang
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Wei Li
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Weibo Zhang
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Runhuai Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Hua Qiu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China.
| | - Xiangyang Li
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China.
| | - Quanli Li
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China.
| | - Jialong Chen
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
4
|
Ibrahim Y, Kamoun E, Abdel Moaty M, Mohy El Din M. Evaluation of carbon nanotubes-hydroxyapatite nanocomposites as bioactive implant coats radiated by near infrared laser. Eur J Oral Sci 2022; 130:e12873. [PMID: 35673772 DOI: 10.1111/eos.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to evaluate carbon nanotubes-hydroxyapatite nanocomposites as bioactive titanium implant coats and to assess the effect of near-infrared radiation on these nanocomposites. Carbon nanotubes were acid-functionalized, and hydroxyapatite was prepared by the wet-chemical precipitation method. Both precursors were used to prepare the carbon nanotubes-hydroxyapatite nanocomposites in two concentrations of hydroxyapatite (0.5 and 1 wt.%). The formed nanocomposites were characterized and used to coat silanized titanium discs and cylinders. Half the specimens of each group were radiated by near-infrared laser, then wettability and shear bond strength were tested for all specimens. Bioactivity was tested by monitoring the formation of calcium phosphate compounds after soaking in simulated body fluid. A significant increase in wettability and bond strength was found in the radiated coats compared to the non-radiated ones with the 1% hydroxyapatite group showing the highest values followed by 0.5% hydroxyapatite then the carbon nanotubes group. The two-way ANOVA test showed that both the difference in material and the laser treatment have had a statistically significant contribution to the increase in wettability and bond strength. The radiated groups also contributed to the formation of more calcium phosphate crystals of larger sizes and higher degrees of crystallinity.
Collapse
Affiliation(s)
- Yomna Ibrahim
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Elbadawy Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg Al-Arab City, Alexandria, Egypt.,Nanotechnology Research Center, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Maha Abdel Moaty
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mona Mohy El Din
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. J Funct Biomater 2022; 13:jfb13020062. [PMID: 35645270 PMCID: PMC9149969 DOI: 10.3390/jfb13020062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The combination of titania nanofilms and silver nanoparticles (NPs) is a very promising material, with antibacterial and osseointegration-induced properties for titanium implant coatings. In this work, we successfully prepared TiO2 nanolayer/Ag NP structures on titanium disks using atomic layer deposition (ALD). The samples were studied by scanning electron microscopy (SEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), contact angle measurements, and SEM-EDS. Antibacterial activity was tested against Staphylococcus aureus. The in vitro cytological response of MG-63 osteosarcoma and human fetal mesenchymal stem cells (FetMSCs) was examined using SEM study of their morphology, MTT test of viability and differentiation using alkaline phosphatase and osteopontin with and without medium-induced differentiation in the osteogenic direction. The samples with TiO2 nanolayers, Ag NPs, and a TiO2/Ag combination showed high antibacterial activity, differentiation in the osteogenic direction, and non-cytotoxicity. The medium for differentiation significantly improved osteogenic differentiation, but the ALD coatings also stimulated differentiation in the absence of the medium. The TiO2/Ag samples showed the best antibacterial ability and differentiation in the osteogenic direction, indicating the success of the combining of TiO2 and Ag to produce a multifunctional biocompatible and bactericidal material.
Collapse
|
6
|
MG-63 and FetMSC Cell Response on Atomic Layer Deposited TiO2 Nanolayers Prepared Using Titanium Tetrachloride and Tetraisopropoxide. COATINGS 2022. [DOI: 10.3390/coatings12050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Titanium oxide nanocoatings were synthesized on the surface of monocrystalline silicon and ultra-fine-grained titanium by atomic layer deposition (ALD) using titanium tetrachloride (TiCl4) and titanium tetraisopropoxide (TTIP). The morphology of the samples was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and composition were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and energy-dispersive spectroscopy (EDS). The cytological response of osteosarcoma MG-63 and human fetal mesenchymal stem cells (FetMSCs) were studied by analyzing their morphology, viability, and alkaline phosphatase activity with and without the use of medium-induced differentiation in the osteogenic direction. A significant influence of the precursor type and ALD temperature on the crystal structure, morphology, composition, and surface free energy of TiO2 nanocoatings was found. The biocompatibility of amorphous non-stoichiometric and partially crystalline stoichiometric TiO2 coatings was compared. Both types of cells showed faster adhesion and improved spreading on the surface for the samples from TTIP compared to those from TiCl4 at the early stages of cultivation (2 h) due to the difference in composition and higher surface free energy. No cytotoxic effect was found on both types of coatings, nor was there a noticeable difference in cell differentiation. All ALD coatings provided excellent biocompatibility and osteoconductive properties.
Collapse
|
7
|
Electrostatic self-assembly approach in the deposition of bio-functional chitosan-based layers enriched with caffeic acid on Ti-6Al-7Nb alloys by alternate immersion. BIOMATERIALS ADVANCES 2022; 136:212791. [PMID: 35929324 DOI: 10.1016/j.bioadv.2022.212791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
Tailoring surface properties by layer-by-layer (LBL) deposition directed on the construction of complex multilayer coatings with nanoscale precision enables the development of novel structures and devices with desired functional properties (i.e., osseointegration, bactericidal activity, biocorrosion protection). Herein, electrostatic self-assembly was applied to fabricate biopolymer-based coatings involving chitosan (CSM) and alginate (AL) enriched with caffeic acid (CA) on Ti-6Al-7Nb alloyed surfaces. The method of CA grafting onto the chitosan backbone (CA-g-CSM) as well as all used reagents for implant functionalization were chosen as green and sustainable approach. The final procedure of surface modification of the Ti-6Al-7Nb alloy consists of three steps: (i) chemical treatment in Piranha solution, (ii) plasma chemical-activation of the Ti alloy surface in a RF CVD (Radio Frequency Chemical Vapour Deposition) reactor using Ar, O2 and NH3 gaseous precursors, and (iii) a multi-step deposition of bio-functional coatings via dip-coating method. Corrosion tests have revealed that the resulting chitosan-based coatings, also these involving CA, block the specimen surface and hinder corrosion of titanium alloy. Furthermore, the antioxidant layers are characterized by beneficial level of roughness (Ra up ca. 350 nm) and moderate hydrophilicity (59°) with the dispersion part of conducive surface energy ca. 30 mJ/m2. Noteworthy, all coatings are biocompatible as the intact morphology of cultured eukaryotic cells ensured proper growth and proliferation, while exhibit bacteriostatic character, particularly in contact with Gram-(-) bacteria (E. coli). The study indicates that the applied simple sustainable strategy has contributed significantly to obtaining homogeneous, stable, and biocompatible while antibacterial biopolymer-based coatings.
Collapse
|
8
|
Selvamani V, Kadian S, Detwiler DA, Zareei A, Woodhouse I, Qi Z, Peana S, Alcaraz AM, Wang H, Rahimi R. Laser-Assisted Nanotexturing and Silver Immobilization on Titanium Implant Surfaces to Enhance Bone Cell Mineralization and Antimicrobial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4014-4027. [PMID: 35312330 DOI: 10.1021/acs.langmuir.2c00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the great advancement and wide use of titanium (Ti) and Ti-based alloys in different orthopedic implants, device-related infections remain the major complication in modern orthopedic and trauma surgery. Most of these infections are often caused by both poor antibacterial and osteoinductive properties of the implant surface. Here, we have demonstrated a facile two-step laser nanotexturing and immobilization of silver onto the titanium implants to improve both cellular integration and antibacterial properties of Ti surfaces. The required threshold laser processing power for effective nanotexturing and osseointegration was systematically determined by the level of osteoblast cells mineralized on the laser nanotextured Ti (LN-Ti) surfaces using a neodymium-doped yttrium aluminum garnet laser (Nd:YAG, wavelength of 1.06 μm). Laser processing powers above 24 W resulted in the formation of hierarchical nanoporous structures (average pore 190 nm) on the Ti surface with a 2.5-fold increase in osseointegration as compared to the pristine Ti surface. Immobilization of silver nanoparticles onto the LN-Ti surface was conducted by dip coating in an aqueous silver ionic solution and subsequently converted to silver nanoparticles (AgNPs) by using a low power laser-assisted photocatalytic reduction process. Structural and surface morphology analysis via XRD and SEM revealed a uniform distribution of Ag and the formation of an AgTi-alloy interface on the Ti surface. The antibacterial efficacy of the LN-Ti with laser immobilized silver (LN-Ti/LI-Ag) was tested against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The LN-Ti/LI-Ag surface was observed to have efficient and stable antimicrobial properties for over 6 days. In addition, it was found that the LN-Ti/LI-Ag maintained a cytocompatibility and bone cell mineralization property similar to the LN-Ti surface. The differential toxicity of the LN-Ti/LI-Ag between bacterial and cellular species qualifies this approach as a promising candidate for novel rapid surface modification of biomedical metal implants.
Collapse
Affiliation(s)
- Vidhya Selvamani
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Sachin Kadian
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | | | - Amin Zareei
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Ian Woodhouse
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Zhimin Qi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samuel Peana
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alejandro M Alcaraz
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| |
Collapse
|
9
|
CHENG Q, LU R, WANG X, CHEN S. Antibacterial activity and cytocompatibility evaluation of the antimicrobial peptide Nal-P-113-loaded graphene oxide coating on titanium. Dent Mater J 2022; 41:905-915. [DOI: 10.4012/dmj.2022-094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Qian CHENG
- Department of Dentistry, Beijing TianTan Hospital, Capital Medical University
| | - Ran LU
- VIP Department, Beijing Stomatological Hospital, Capital Medical University
| | - Xin WANG
- VIP Department, Beijing Stomatological Hospital, Capital Medical University
| | - Su CHEN
- VIP Department, Beijing Stomatological Hospital, Capital Medical University
| |
Collapse
|
10
|
Nazarov D, Rudakova A, Borisov E, Popovich A. Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7683. [PMID: 34947279 PMCID: PMC8708015 DOI: 10.3390/ma14247683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
Three-dimensional printed nitinol (NiTi) alloys have broad prospects for application in medicine due to their unique mechanical properties (shape memory effect and superplasticity) and the possibilities of additive technologies. However, in addition to mechanical properties, specific physicochemical characteristics of the surface are necessary for successful medical applications. In this work, a comparative study of additively manufactured (AM) NiTi samples etched in H2SO4/H2O2, HCl/H2SO4, and NH4OH/H2O2 mixtures was performed. The morphology, topography, wettability, free surface energy, and chemical composition of the surface were studied in detail. It was found that etching in H2SO4/H2O2 practically does not change the surface morphology, while HCl/H2SO4 treatment leads to the formation of a developed morphology and topography. In addition, exposure of nitinol to H2SO4/H2O2 and HCl/H2SO4 contaminated its surface with sulfur and made the surface wettability unstable in air. Etching in NH4OH/H2O2 results in surface cracking and formation of flat plates (10-20 microns) due to the dissolution of titanium, but clearly increases the hydrophilicity of the surface (values of water contact angles are 32-58°). The etch duration (30 min or 120 min) significantly affects the morphology, topography, wettability and free surface energy for the HCl/H2SO4 and NH4OH/H2O2 etched samples, but has almost no effect on surface composition.
Collapse
Affiliation(s)
- Denis Nazarov
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia; (E.B.); (A.P.)
- Research Centre “Innovative Technologies of Composite Nanomaterials”, Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia
| | - Aida Rudakova
- Laboratory “Photoactive Nanocomposite Materials”, Saint Petersburg State University, Ulianovskaia Str. 1, Peterhof, 198504 Saint Petersburg, Russia;
| | - Evgenii Borisov
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia; (E.B.); (A.P.)
| | - Anatoliy Popovich
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia; (E.B.); (A.P.)
| |
Collapse
|
11
|
Konopatsky AS, Teplyakova TO, Popova DV, Vlasova KY, Prokoshkin SD, Shtansky DV. Surface modification and antibacterial properties of superelastic Ti-Zr-based alloys for medical application. Colloids Surf B Biointerfaces 2021; 209:112183. [PMID: 34741909 DOI: 10.1016/j.colsurfb.2021.112183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022]
Abstract
To date, significant progress has been achieved in the development of biomedical superelastic Ti-based alloys with high mechanical properties. In view of the high probability of implant-associated infection, an urgent task is to impart bactericidal properties to the material. Herein, advanced superelastic Ti-18Zr-15Nb alloys were surface-etched in a piranha solution, and then Ag nanoparticles were deposited on their surface using a polyol process. This led to the formation of a porous surface layer with a thickness of approximately 100 nm and pore size of less than 20 nm, filled with metallic Ag nanoparticles with an average size of 14 nm. The surface-modified samples showed superior antibacterial activity against E.coli cells. The enhanced bactericidal efficiency is explained by the combination of a higher rate of Ag+ ions release and direct contact of E.coli cells with Ag nanoparticles.
Collapse
Affiliation(s)
- Anton S Konopatsky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia.
| | - Tatyana O Teplyakova
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Daria V Popova
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Kseniya Yu Vlasova
- M.V. Lomonosov Moscow State University, School of Chemistry, Moscow 119991, Russia; Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Sergey D Prokoshkin
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| |
Collapse
|
12
|
Effect of Nitrogen Ion Implantation Energy on the Mechanical and Chemical Properties of AISI M50 Steel. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/4630661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitrogen ion implantation has shown its role in enhancing steel surface properties. In this work, AISI M50 steel was implanted with nitrogen ions by using the metal vapor vacuum arc technique with a dose of 2 × 1017 cm−2, and corresponding implanted energies were at 60 keV, 80 keV, and 100 keV, respectively. The distribution of implanted nitrogen ions was calculated, and the samples were tribologically tested and examined. As shown by the results, the microhardness in implanted samples was 1.17 times greater relative to that of the unimplanted sample. The implantation of the nitrogen ion leads to a change in the friction coefficient of the AISI M50 steel. Adhesive wear mechanism occurs in the unimplanted sample, and adhesion resistance tends to increase when nitrogen-implanted energy increases. The formation of oxides α-Fe2O3 and Fe3O4 further enhanced the tribological properties for implanted samples.
Collapse
|
13
|
Improvisation and Evaluation of Laterosporulin Coated Titanium Surfaces for dental Applications: An In Vitro Investigation. Indian J Microbiol 2021; 61:203-211. [PMID: 33927461 DOI: 10.1007/s12088-021-00933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
Despite recent improvement in implant survival rates, there remains a significant demand for enhancing the long-term clinical efficacy of titanium (Ti) implants, particularly for the prevention of peri-implantitis. Bioactive substances such as antimicrobial peptides are emerging as effective alternatives for contemporary antimicrobial agents used in dental health care. Current research work was focused to use laterosporulins that are non-haemolytic cationic antimicrobial peptides from Brevibacillus spp. for coating commercially available Ti discs. The coated Ti surfaces were evaluated in vitro for biofilm formation by two dental plaque isolates Streptococcus gordonii strain DIGK25 and S. mutans strain DIGK119 as representatives of commensal and pathogenic streptococci respectively. The biofilm inhibition was ascertained with replicated experiments on hydroxyapatite discs and confirmed by florescence microscopy. The laterosporulin coated Ti discs showed significantly reduced biofilm formation by oral streptococci and displayed promising potential to enhance the antibacterial surface properties. Such improvised Ti surfaces may curb the menace of oral streptococcal biofilm formation on dental implants and the associated implant failures.
Collapse
|
14
|
The Effects of Chemical Etching and Ultra-Fine Grain Structure of Titanium on MG-63 Cells Response. METALS 2021. [DOI: 10.3390/met11030510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we study the influence of the surface properties of ultrafine grained (UFG) and coarse grained (CG) titanium on the morphology, viability, proliferation and differentiation of osteoblast-like MG-63 cells. Wet chemical etching in H2SO4/H2O2 and NH4OH/H2O2 solutions was used for producing surfaces with varying morphology, topography, composition and wettability. The topography and morphology have been studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition was determined by time of flight mass-spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). The results showed that it is possible to obtain samples with different compositions, hydrophilicity, topography and nanoscale or/and microscale structures by changing the etching time and the type of etching solution. It was found that developed topography and morphology can improve spreading and proliferation rate of MG-63 cells. A significant advantage of the samples of the UFG series in comparison with CG in adhesion, proliferation at later stages of cultivation (7 days), higher alkaline phosphatase (ALP) activity and faster achievement of its maximum values was found. However, there is no clear benefit of the UFG series on osteopontin (OPN) expression. All studied samples showed no cytotoxicity towards MG-63 cells and promoted their osteogenic differentiation.
Collapse
|
15
|
Zhang Z, Xu R, Yang Y, Liang C, Yu X, Liu Y, Wang T, Yu Y, Deng F. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to improve osseointegration. J Nanobiotechnology 2021; 19:78. [PMID: 33741002 PMCID: PMC7980346 DOI: 10.1186/s12951-021-00826-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
Background Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. Results We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. Conclusions These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants. ![]()
Collapse
Affiliation(s)
- Zhengchuan Zhang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yang Yang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Chaoan Liang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yun Liu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Tianlu Wang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No.56 of LingYuanXiLu, Guangzhou, 510055, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.
| |
Collapse
|
16
|
Kyzioł K, Rajczyk J, Wolski K, Kyzioł A, Handke B, Kaczmarek Ł, Grzesik Z. Dual-purpose surface functionalization of Ti-6Al-7Nb involving oxygen plasma treatment and Si-DLC or chitosan-based coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111848. [PMID: 33579482 DOI: 10.1016/j.msec.2020.111848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/10/2020] [Accepted: 12/27/2020] [Indexed: 01/13/2023]
Abstract
The work presents a detailed study on the diamond-like structures doped with Si atoms and biopolymers-based coatings (chitosan, alginate) enriched with Ag nanoparticles (Ag NPs) deposited on the Ti-6Al-7Nb substrate. Multilayers were obtained by Plasma Enhanced Radio Frequency Chemical Vapour Deposition (PE RF CVD) technique and subsequent deposition of biopolymers by immersion method. The impact of Si atoms and Ag NPs on chemical structure, microstructure, topography, cytotoxicity as well as the hardness and Young modulus of the resulting layers was precisely investigated. The most advantageous conditions of plasma functionalization in RF reactor were the mixture of O2-Ar-NH3 in volume ratio of 10/1/9 in the first stage of functionalization (pre-activation). In the case of Si-DLC coatings (up to ca. 19 at.%) the lower silane flow (4 cm3/min) resulted in significant decrease of surface roughness (up to ca. Ra = 0.71 nm) of modified surfaces and increase of hardness reaching ca. 900 nm depth into surface (up to ca. 16 GPa). The most attractive among biopolymer-based coating on Ti-6Al-7Nb in terms of biological activity was chitosan with Ag NPs (diameter of ca. 25 nm) with additional alginate layer. AFM analysis revealed a uniform distribution of Ag NPs in the chitosan matrix. This contributed to advantageous physicochemical and biological properties assuring proper cell adhesion and proliferation. Noteworthy, the resulting surface functionalization of Ti-6Al-7Nb alloy did not cause significant cytotoxicity in vitro, giving a strong hope for perspective applications in implantology.
Collapse
Affiliation(s)
- Karol Kyzioł
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków, Poland.
| | - Julia Rajczyk
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków, Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30 387 Kraków, Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30 387 Kraków, Poland
| | - Bartosz Handke
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków, Poland
| | - Łukasz Kaczmarek
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90 924 Łódz, Poland
| | - Zbigniew Grzesik
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków, Poland
| |
Collapse
|
17
|
Chi Y, An S, Xu Y, Liu M, Zhang J. In vitro biocompatibility of a sandblasted, acid-etched HA composite coating on ultrafine-grained titanium. RSC Adv 2021; 11:6124-6130. [PMID: 35423127 PMCID: PMC8694837 DOI: 10.1039/d0ra10146j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
A sandblasted, acid-etching hydroxyapatite (SLA-HA) composite coating on ultrafine-grained titanium was synthesized by the sandblasting, acid etching and electrophoresis deposition. Mouse osteoblasts (MC3T3-E1) were cultured in vitro and inoculated on the SLA-HA composite coating of the ultrafine-grained titanium. Using ultrafine-grained titanium with SLA coating as the control group, the adhesion and proliferation of the osteoblasts were analyzed using the CCK-8 assay. The number and morphology of the cells were observed using a laser confocal microscope. Cells toxicity of the cytotoxicity to osteoblasts was studied by culturing them in an immersion solution of the SLA-HA composite coating. The hemolysis properties of the obtained material were assessed using fresh rabbit blood. Ultrafine-grained titanium with the SLA-HA composite coating was found to have no significant toxicity to osteoblasts, as well as good blood compatibility, playing a positive role in the adhesion of osteoblasts and promoting their proliferation and differentiation.
Collapse
Affiliation(s)
- Yanxia Chi
- Jiamusi University Jiamusi heilongjiang province China
| | - Sipeng An
- Jiamusi University Jiamusi heilongjiang province China
| | - Yunpeng Xu
- Jiamusi University Jiamusi heilongjiang province China
| | - Mingda Liu
- Jiamusi University Jiamusi heilongjiang province China
| | - Jie Zhang
- Jiamusi University Jiamusi heilongjiang province China
| |
Collapse
|
18
|
The influence of laser frequency and groove distance on cell adhesion, cell viability, and antibacterial characteristics of Ti-6Al-4V dental implants treated by modern fiber engraving laser. Dent Mater 2021; 37:547-558. [PMID: 33461762 DOI: 10.1016/j.dental.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/27/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Micro-nano scale surface modification of Ti-6Al-4V was investigated through the fascinated modern fiber engraving laser method. The process was performed at a high laser speed of 2000mm/s, under different laser frequencies (20-160kHz) and groove distances (0.5-50μm). METHODS Topographic evaluations such as Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FE-SEM) were used to identify the quality and regularity of patterns. The proliferation of human osteoblast-like osteosarcoma cells (MG63) was analyzed by MTT assay for up to 72h. Also, the plate counting method was used to quantify the viability potential of the modified surface against Escherichia coli bacteria. RESULTS The cellular viability of the sample modified at the laser frequency of 20kHz and grooving distance of 50μm increased up to 35 and 10% compared to the non-treated and control samples, respectively. In the case of the surface modification at lower grooving distances range between 0.5-50μm, the maximum laser frequency (160kHz) applied leads to lower pulse's energies and less bacterial adhesion. Otherwise, at groove distances more than 50μm, the minimum laser frequency (20kHz) applied reduces the laser pulse overlaps, increases the cell adhesion and antibacterial properties. SIGNIFICANCE Surface modification by the fiber engraving laser process significantly enhances the cell adhesion on the surface. As a result of such roughness and cell adhesion enhancement, the surface toxicity feature diminished, and its antibacterial properties improved.
Collapse
|
19
|
The effect of surface preparation on the protective properties of Al2O3 and HfO2 thin films deposited on cp-titanium by atomic layer deposition. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Yin X, Yan L, Jun Hao D, Liu S, Yang M, He B, Liu Z. Calcium alginate template-mineral substituted hydroxyapatite hydrogel coated titanium implant for tibia bone regeneration. Int J Pharm 2020; 582:119303. [DOI: 10.1016/j.ijpharm.2020.119303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
|
21
|
Repeated Exposure of Nanostructured Titanium to Osteoblasts with Respect to Peri-Implantitis. MATERIALS 2020; 13:ma13030697. [PMID: 32033100 PMCID: PMC7040921 DOI: 10.3390/ma13030697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/04/2023]
Abstract
Titanium offers excellent biocompatibility and extraordinary mechanical properties. As a result, it is used as a material for dental implants. Implants infected by peri-implantitis can be cleaned for successful re-osseointegration. Optimal surface properties, such as roughness and wettability, have a significant impact on cell adhesion. The aim of this study was to evaluate the adhesion and proliferation of osteoblasts on the surface of repeatedly cleaned nanostructured titanium samples. Human osteoblast-like cells MG-63 were seeded on nanostructured titanium specimens manufactured from rods produced by the equal channel angular pressing. For surface characterization, roughness and wettability were measured. Cell adhesion after 2 h as well as cell proliferation after 48 h from plating was assessed. We have found that this repeated cleaning of titanium surface reduced cell adhesion as well as proliferation. These events depend on interplay of surface properties, such as wettability, roughness and topography. It is difficult to distinguish which factors are responsible for these events and further investigations will be required. However, even after the several rounds of repeated cleaning, there was a certain rate of adhesion and proliferation recorded. Therefore the attempts to save failing implants by using in situ cleaning are promising.
Collapse
|
22
|
Piras AM, Esin S, Benedetti A, Maisetta G, Fabiano A, Zambito Y, Batoni G. Antibacterial, Antibiofilm, and Antiadhesive Properties of Different Quaternized Chitosan Derivatives. Int J Mol Sci 2019; 20:E6297. [PMID: 31847119 PMCID: PMC6940869 DOI: 10.3390/ijms20246297] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
In the era of antimicrobial resistance, the identification of new antimicrobials is a research priority at the global level. In this regard, the attention towards functional antimicrobial polymers, with biomedical/pharmaceutical grade, and exerting anti-infective properties has recently grown. The aim of this study was to evaluate the antibacterial, antibiofilm, and antiadhesive properties of a number of quaternized chitosan derivatives that have displayed significant muco-adhesive properties and wound healing promotion features in previous studies. Low (QAL) and high (QAH) molecular weight quaternized chitosan derivatives were synthetized and further modified with thiol moieties or pendant cyclodextrin, and their antibacterial activity evaluated as minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The ability of the derivatives to prevent biofilm formation was assessed by crystal violet staining. Both QAL and QAH derivatives exerted a bactericidal and/or inhibitory activity on the growth of P. aeruginosa and S. epidermidis. The same compounds also showed marked dose-dependent anti-biofilm activity. Furthermore, the high molecular weight derivative (QAH) was used to functionalize titanium plates. The successful functionalization, demonstrated by electron microscopy, was able to partially inhibit the adhesion of S. epidermidis at 6 h of incubation. The shown ability of the chitosan derivatives tested to both inhibit bacterial growth and/or biofilm formation of clinically relevant bacterial species reveals their potential as multifunctional molecules against bacterial infections.
Collapse
Affiliation(s)
- Anna Maria Piras
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.F.); (Y.Z.)
| | - Semih Esin
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (A.B.); (G.M.)
| | - Arianna Benedetti
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (A.B.); (G.M.)
| | - Giuseppantonio Maisetta
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (A.B.); (G.M.)
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.F.); (Y.Z.)
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.F.); (Y.Z.)
- Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, 56126 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (A.B.); (G.M.)
| |
Collapse
|
23
|
Feng F, Wu Y, Xin H, Chen X, Guo Y, Qin D, An B, Diao X, Luo H. Surface Characteristics and Biocompatibility of Ultrafine-Grain Ti after Sandblasting and Acid Etching for Dental Implants. ACS Biomater Sci Eng 2019; 5:5107-5115. [PMID: 33455258 DOI: 10.1021/acsbiomaterials.9b00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated the surface characteristics and biocompatibility of ultrafine-grain pure titanium (UFG Ti) after sandblasting and acid etching (SLA) treatment to determine an effective method for modification of UFG Ti dental implants. The UFG Ti was processed by equal-channel angular pressing (ECAP). The micromorphology, roughness, and wettability of its surface were studied after SLA modification in different conditions. Rat bone marrow mesenchymal stem cells were subsequently seeded onto the specimens to evaluate the biocompatibility of cell adhesion, proliferation, and differentiation compared with commercially pure titanium (CP Ti). The results showed that surface characteristics of UFG Ti were affected by the pressure of sandblasting and acid etching time in addition to material properties. The favorable hierarchical porous structure that would benefit cell adhesion was formed on the UFG Ti surface when the pressure of sandblasting was 0.6 MPa and the acid etching time was 5 min; at this time, UFG Ti promoted proliferation and differentiation to a greater extent than CP Ti because of its excellent wettability. From this study, it could be seen that UFG Ti can be used as a dental implant material after proper surface modification.
Collapse
Affiliation(s)
- Fan Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoqiang Chen
- Department of Plastic and Burn Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongyang Qin
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Baili An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiwen Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
24
|
Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 2019; 94:112-131. [PMID: 31128320 DOI: 10.1016/j.actbio.2019.05.045] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
The main aim of this review study was to report the state of art on the nano-scale technological advancements of titanium implant surfaces to enhance the osseointegration process. Several methods of surface modification are chronologically described bridging ordinary methods (e.g. grit blasting and etching) and advanced physicochemical approaches such as 3D-laser texturing and biomimetic modification. Functionalization procedures by using proteins, peptides, and bioactive ceramics have provided an enhancement in wettability and bioactivity of implant surfaces. Furthermore, recent findings have revealed a combined beneficial effect of micro- and nano-scale modification and biomimetic functionalization of titanium surfaces. However, some technological developments of implant surfaces are not commercially available yet due to costs and a lack of clinical validation for such recent surfaces. Further in vitro and in vivo studies are required to endorse the use of enhanced biomimetic implant surfaces. STATEMENT OF SIGNIFICANCE: Grit-blasting followed by acid-etching is currently used for titanium implant modifications, although recent technological biomimetic physicochemical methods have revealed enhanced osteoconductive and anti-microbial outcomes. An improvement in wettability and bioactivity of titanium implant surfaces has been accomplished by combining micro and nano-scale modification and functionalization with protein, peptides, and bioactive compounds. Such morphological and chemical modification of the titanium surfaces induce the migration and differentiation of osteogenic cells followed by an enhancement of the mineral matrix formation that accelerate the osseointegration process. Additionally, the incorporation of bioactive molecules into the nanostructured surfaces is a promising strategy to avoid early and late implant failures induced by the biofilm accumulation.
Collapse
|
25
|
A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications. MATERIALS 2019; 12:ma12142246. [PMID: 31336851 PMCID: PMC6678598 DOI: 10.3390/ma12142246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/28/2023]
Abstract
The paper deals with the experimental study of laser beam micromachining of the powder metallurgy processed Ti compacts applying the industrial grade fibre nanosecond laser operating at the wavelength of 1064 nm. The influence of the laser energy density on the surface roughness, surface morphology and surface elements composition was investigated and evaluated by means of surface roughness measurement, scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The different laser treatment parameters resulted in the surfaces of very different characteristics of the newly developed biocompatible material prepared by advanced low temperature technology of hydride dehydride (HDH) titanium powder compactation. The results indicate that the laser pulse energy has remarkable effects on the machined surface characteristics which are discussed from the point of view of application in dental implantology.
Collapse
|
26
|
González-Henríquez CM, Veliz-Silva DF, Sarabia-Vallejos MA, Del Campo-García A, Rodríguez-Hernández J. Micrometric Wrinkled Patterns Spontaneously Formed on Hydrogel Thin Films via Argon Plasma Exposure. Molecules 2019; 24:E751. [PMID: 30791473 PMCID: PMC6412580 DOI: 10.3390/molecules24040751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
The generation of microstructured patterns on the surface of a specific polymeric material could radically improve their performance in a particular application. Most of the interactions with the environment occur at the material interface; therefore, increasing the exposed active surface considerably improves their range of application. In this article, a simple and reliable protocol to form spontaneous wrinkled patterns using a hydrogel layer is reported. For this purpose, we took advantage of the doctor blade technique in order to generate homogenous films over solid substrates with controlled thickness and large coverage. The hydrogel wrinkle formation involves a prepolymerization step which produces oligomers leading to a solution with increased viscosity, enough for doctor blade deposition. Subsequently, the material was exposed to vacuum and plasma to trigger wrinkled pattern formation. Finally, a UV-polymerization treatment was applied to fix the undulations on top. Interestingly, the experimental parameters allowed us to finely tune the wrinkle characteristics (period, amplitude, and orientation). For this study, two main aspects were explored. The first one is related to the role of the substrate functionalization on the wrinkle formation. The second study correlates the deswelling time and its relationship with the dimensions and distribution of the wrinkle pattern. In the first batch, four different 3-(trimethoxysilyl)propyl methacrylate (TSM) concentrations were used to functionalize the substrate in order to enhance the adhesion between hydrogel film and the substrate. The wrinkles formed were characterized in terms of wrinkle amplitude, wavelength, pattern roughness, and surface Young modulus, by using AFM in imaging and force spectroscopy modes. Moreover, the chemical composition of the hydrogel film cross-section and the effect of the plasma treatment were analyzed with confocal Raman spectroscopy. These results demonstrated that an oxidized layer was formed on top of the hydrogel films due to the exposure to an argon plasma.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Santiago 7800003, Chile.
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago 8940577, Chile.
| | - Diego F Veliz-Silva
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Escuela de Ingeniería, Departamento de Ingeniería Estructural y Geotecnia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile.
- Escuela de Ingeniería, Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile.
| | - Adolfo Del Campo-García
- Ceramics for Smart Systems Group, Departamento de Electrocerámicos, Instituto de Cerámica y Vidrio- Consejo Superior de Investigaciones Científicas (ICV-CSIC), Kelsen 5, Madrid 28049, Spain.
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group. Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
27
|
Assembled gold nanorods for the photothermal killing of bacteria. Colloids Surf B Biointerfaces 2018; 173:833-841. [PMID: 30551299 DOI: 10.1016/j.colsurfb.2018.10.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022]
Abstract
Titanium and its alloys are widely used in many clinical applications, but implant-associated infection may lead to implant failure. Because of the increasing concern about antibiotic resistant pathogen, photothermal therapy (PTT) as a new treatment strategy has received considerable attention. In this work, gold nanorods (GNRs) photoexcited by the near-infrared (NIR) light were immobilized on Ti surface by electrostatic surface self-assembly technique. Field emission scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to explore the morphology and composition of the GNRs-modified surface. The photothermal temperature of the immobilized GNRs was measured by an infrared thermal imaging system in real time. In vitro study reveal that the prepared GNRs-modified surface exhibits antibacterial activity against four kinds of bacterial strains including both Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive cocci (Staphylococcus aureus and Staphylococcus epidermidis) under the irradiation of 808 nm laser. Besides, the antibacterial efficiency of the GNRs-modified surface could keep stable after multiple laser exposure. It should be noted that the GNRs-modified surface shows better antibacterial effect against Gram-negative bacilli compared to Gram-positive cocci. Moreover, the GNRs-modified surface has no obvious adverse effect to the osteoblast precursor cells under NIR irradiation. These data demonstrate that the GNRs-modified surface with negligible cytotoxicity and recyclable antibacterial effect provides a favorable model for the translation of photothermal therapy to the clinical application.
Collapse
|
28
|
Experton J, Wu X, Wang G, Martin CR. Microtube‐Membrane Methodology for Electrochemical Synthesis and Study of Electroactive and Ionically Conductive Materials, and the Conductivity of MnO
2. ChemElectroChem 2018. [DOI: 10.1002/celc.201801010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juliette Experton
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| | - Xiaojian Wu
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| | - Gelan Wang
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| | - Charles R. Martin
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| |
Collapse
|
29
|
Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 2018; 6:1312-1338. [PMID: 29744496 DOI: 10.1039/c8bm00021b] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.
Collapse
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical Nanotechnology, International Campus, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
30
|
Proliferation of Osteoblasts on Laser-Modified Nanostructured Titanium Surfaces. MATERIALS 2018; 11:ma11101827. [PMID: 30261588 PMCID: PMC6213816 DOI: 10.3390/ma11101827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Nanostructured titanium has become a useful material for biomedical applications such as dental implants. Certain surface properties (grain size, roughness, wettability) are highly expected to promote cell adhesion and osseointegration. The aim of this study was to compare the biocompatibilities of several titanium materials using human osteoblast cell line hFOB 1.19. Eight different types of specimens were examined: machined commercially pure grade 2 (cpTi2) and 4 (cpTi4) titanium, nanostructured titanium of the same grades (nTi2, nTi4), and corresponding specimens with laser-treated surfaces (cpTi2L, cpTi4L, nTi2L, nTi4L). Their surface topography was evaluated by means of scanning electron microscopy. Surface roughness was measured using a mechanical contact profilometer. Specimens with laser-treated surfaces had significantly higher surface roughness. Wettability was measured by the drop contact angle method. Nanostructured samples had significantly higher wettability. Cell proliferation after 48 hours from plating was assessed by viability and proliferation assay. The highest proliferation of osteoblasts was found in nTi4 specimens. The analysis of cell proliferation revealed a difference between machined and laser-treated specimens. The mean proliferation was lower on the laser-treated titanium materials. Although plain laser treatment increases surface roughness and wettability, it does not seem to lead to improved biocompatibility.
Collapse
|
31
|
Nazarov DV, Smirnov VM, Zemtsova EG, Yudintceva NM, Shevtsov MA, Valiev RZ. Enhanced Osseointegrative Properties of Ultra-Fine-Grained Titanium Implants Modified by Chemical Etching and Atomic Layer Deposition. ACS Biomater Sci Eng 2018; 4:3268-3281. [DOI: 10.1021/acsbiomaterials.8b00342] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Denis V. Nazarov
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
- National Technology Initiative Center of Excellence in Advanced Manufacturing Technologies at Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29/1 str., Saint Petersburg 195251, Russia
| | - Vladimir M. Smirnov
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Elena G. Zemtsova
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Natalia M. Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave. 4, Saint Petersburg 194064, Russia
| | - Maxim A. Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave. 4, Saint Petersburg 194064, Russia
- First Pavlov State Medical University of St. Petersburg, Lva Tolstogo str. 6-8, Saint Petersburg 197022, Russia
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaniger Str. 22, 81675 Munich, Germany
| | - Ruslan Z. Valiev
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|