1
|
Steroid-Based Liquid Crystalline Polymers: Responsive and Biocompatible Materials of the Future. CRYSTALS 2022. [DOI: 10.3390/cryst12071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid-based liquid crystal polymers and co-polymers have come a long way, with new and significant advances being made every year. This paper reviews some of the recent key developments in steroid-based liquid crystal polymers and co-polymers. It covers the structure–property relationship between cholesterol and sterol-based compounds and their corresponding polymers, and the influence of chemical structure and synthesis conditions on the liquid crystalline behaviour. An overview of the nature of self-assembly of these materials in solvents and through polymerisation is given. The role of liquid crystalline properties in the applications of these materials, in the creation of nano-objects, drug delivery and biomedicine and photonic and electronic devices, is discussed.
Collapse
|
2
|
Chen G, Zheng Q, Dai J, Liu J, Yin J, Xu X, Chen A, Ren L. Reduction-sensitive mixed micelles based on mPEG-SS-PzLL /TPGS to enhance anticancer efficiency of doxorubicin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Zhai H, Chen K, Meng Y, Wu Z, Deng R, Bai Y, Zhou J, Quan D. Synthesis and self-assembly of amphiphilic diblock polycarbonates with various pendant hydrophilic groups. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Chen C, Li Z, Chen S, Kong L, Guo Z, Hu J, Chen Z, Yang L. The preparation of hydrogels with highly efficient self-healing and excellent mechanical properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Liang E, Guo Z, Hu Z, Chen Z, Reheman A, Wang J, Hu J. pH-Responsive expandable polycarbonate–doxorubicin conjugate nanoparticles for fast intracellular drug release. NEW J CHEM 2021. [DOI: 10.1039/d1nj00598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles with tertiary amines were prepared, which are pH-responsive, expanding to expose the acid-sensitive chemical bond and accelerating drug release.
Collapse
Affiliation(s)
- Enhui Liang
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhihao Guo
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhuang Hu
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Aikebaier Reheman
- Key Laboratory of Toxicology
- Medical College
- Ningde Normal University
- Ningde
- China
| | - Jiwei Wang
- Fujian Province University Engineering Research Center of Mindong She Medicine
- Medical College
- Ningde Normal University
- Ningde
- China
| | - Jianshe Hu
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| |
Collapse
|
6
|
Liu X, Guo Z, Ge T, Hu J, Wang J, Yang L. Self-assembly and in vitro drug release behaviors of amphiphilic copolymers based on functionalized aliphatic liquid crystalline polycarbonate with pH/temperature dual response. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Zhou S, Fu S, Wang H, Deng Y, Zhou X, Sun W, Zhai Y. Acetal-linked polymeric prodrug micelles based on aliphatic polycarbonates for paclitaxel delivery: preparation, characterization, in vitro release and anti-proliferation effects. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2007-2023. [PMID: 32619161 DOI: 10.1080/09205063.2020.1792046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acidic tumor microenvironment has been extensively explored to design pH-responsive paclitaxel prodrug micelles for cancer therapy. The object of this study is to investigate the pH-responsive drug release behavior and the anti-proliferation capacity of acetal-linked paclitaxel polymeric prodrug micelles. The prodrug was synthesized and evaluated for paclitaxel content. The prodrug micelles were fabricated and characterized for morphology, size, in vitro pH-responsive paclitaxel release, cellular uptake, and anti-proliferation. Paclitaxel content was 33 wt%. The prodrug micelles exhibited spherical structure with the hydrodynamic diameter of 154 nm. Besides, the in vitro paclitaxel release behavior was verified to be pH-responsive, and 77%, 38%, and 17% of parent free paclitaxel was released from the nano-sized prodrug micelles in 13 h at pH 5.5, 6.5, and 7.4, respectively. The cellular uptake assessment demonstrated the time-dependent internalization of prodrug micelles. Meanwhile, CCK-8 analysis showed that prodrug micelles possessed the potent anti-proliferation effects. Prodrug micelles based on aliphatic polycarbonates present a promising platform for cancer chemotherapy due to the pH-responsive characteristics of acetal bond, potent anti-proliferation effects, and outstanding cytocompatibility of aliphatic polycarbonates.
Collapse
Affiliation(s)
- Shiya Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenhe District, Shenyang, China
| | - Shuwen Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenhe District, Shenyang, China
| | - Hanle Wang
- School of Material Science and Engineering, Northeast University, Heping District, Shenyang, China
| | - Yanhao Deng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenhe District, Shenyang, China
| | - Xing Zhou
- Hainan Institute of Materia Medica, Haikou, China
| | - Wei Sun
- School of Medical Devices, Shenyang Pharmaceutical University, Shenhe District, Shenyang, China
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenhe District, Shenyang, China
| |
Collapse
|
8
|
Guerrero-Luna G, Hernández-Linares MG, Bernès S, Carrasco-Carballo A, Montalvo-Guerrero D, Fernández-Herrera MA, Sandoval-Ramírez J. Mesoscale Assembly of Bisteroidal Esters from Terephthalic Acid. Molecules 2020; 25:molecules25051213. [PMID: 32182644 PMCID: PMC7179421 DOI: 10.3390/molecules25051213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 11/16/2022] Open
Abstract
A new series of bisteroidal esters was synthesized using a spacer group, sterols and sapogenins as substrates. Steroidal dimers were prepared in high yields employing diesters of terephthalic acid as linkages at the 3β, 3'β steroidal positions. In all attempts to crystallize bisteroids, it was observed that the compounds tended to self-organize in solution, which was detected when employing various solvent systems. The non-covalent interactions (van der Waals) of the steroidal moieties of this series of symmetrical bisteroids, the polarity of the solvents systems, and the different solubilities of the bisteroid aggregates, indeed induce the molecules to self-assemble into supramolecular structures with well-defined organization. Our results show that the self-assembled structures for the bisteroidal derivatives depend on the solvent system used: with hexane/EtOAc, membrane-shaped structures were obtained, while pure EtOAc afforded strand-shaped arrangements. In the CHCl3/CH3OH system, thin strands were formed, since van der Waals interactions are lowered in this system, as a consequence of the increased solubility of the bisteroids in CHCl3. Based on the characterization by SEM and XRD, we show evidence that the phenomenon of self-assembly of bisteroids occurs presenting different morphologies depending on the solvent used. The new steroidal dimer derivatives were characterized by NMR, TGA, DSC, SEM, and XRD. Finally, the molecular structure of one bisteroid was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Gabriel Guerrero-Luna
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico; (G.G.-L.); (A.C.-C.); (J.S.-R.)
| | - María Guadalupe Hernández-Linares
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
- Laboratorio de Investigación, Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
- Correspondence:
| | - Sylvain Bernès
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico;
| | - Alan Carrasco-Carballo
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico; (G.G.-L.); (A.C.-C.); (J.S.-R.)
| | - Diana Montalvo-Guerrero
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados–Unidad Mérida, km 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yuc., Mexico; (D.M.-G.); (M.A.F.-H.)
| | - María A. Fernández-Herrera
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados–Unidad Mérida, km 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yuc., Mexico; (D.M.-G.); (M.A.F.-H.)
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico; (G.G.-L.); (A.C.-C.); (J.S.-R.)
| |
Collapse
|
9
|
Li M, Guo JW, Wen WQ, Chen JK. Biodegradable Redox-Sensitive Star Polymer Nanomicelles for Enhancing Doxorubicin Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E547. [PMID: 30987287 PMCID: PMC6523129 DOI: 10.3390/nano9040547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
A typical amphiphilic star polymer adamantane-[poly(lactic-co-glycolic acid)-bis(2-carboxyethyl) sulfide-poly(ethylene glycol) monomethyl ether)]₄ with a specific hydrophilic/redox-sensitive/hydrophobic structure was designed and synthesized through ring opening and esterification reactions. The self-assembled nanomicelles were used as doxorubicin (DOX) delivery vehicles with suitable critical micelle concentrations (5.0 mg/L). After the drug being loaded, drug-loaded micelles showed good drug-loading efficiency (10.39%), encapsulation efficiency (58.1%), and drug release (up to 60%) under simulated biological environment conditions. In addition, the backbone structure of the biodegradable polymer was easily hydrolyzed by the action of biological enzymes. As expected, cell-based studies showed that the designed polymer micelles possessed good biocompatibility (a survival rate of 85% for NH-3T3 cells). Moreover, the drug (DOX) still maintained good anti-cancer effects after being loaded, which caused 40% of MCF-7 cells to survive. These redox-sensitive micelles showed anti-tumor therapeutic potential.
Collapse
Affiliation(s)
- Meng Li
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106, Taiwan.
| | - Jian-Wei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wei-Qiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106, Taiwan.
| |
Collapse
|
10
|
Guo Z, Liu X, Chen Z, Hu J, Yang L. New liquid crystal polycarbonate micelles for intracellular delivery of anticancer drugs. Colloids Surf B Biointerfaces 2019; 178:395-403. [PMID: 30903978 DOI: 10.1016/j.colsurfb.2019.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
To construct pH/temperature dual sensitive micelles as novel drug delivery carriers, the synthesis of two diblock copolymers mPEG113-PMCC9-(PMCC-DBO)27 and mPEG43-PMCC25-(PMCC-DHO)15 based on mPEG and polycarbonate modified by acid and liquid crystal groups is described. In aqueous solution, mPEG113-PMCC9-(PMCC-DBO)27 and mPEG43-PMCC25-(PMCC-DHO)15 could self-assemble to form nanospheres and vesicles at very low critical micelle concentration, respectively. Both nanospheres and vesicles were less than 100 nm in diameter and demonstrated high loading capacity of doxorubicin (DOX) through ionic interaction between the free carboxyl groups in PMCC segments and the amine groups in DOX. In vitro release studies indicated that the two copolymer micelles were capable of pH/temperature-triggered release of doxorubicin and without a significant initial burst release. Furthermore, MTT assays showed that the blank copolymer micelles were nontoxic, while the drug-loaded micelles exhibited potent cytotoxic activity towards HeLa cells. These pH/temperature responsive copolymer micelles provided a new strategy for constructing stimuli-responsive drug delivery carriers in chemotherapy.
Collapse
Affiliation(s)
- Zhihao Guo
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Xiaofeng Liu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China.
| | - Liqun Yang
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang 110031, China.
| |
Collapse
|
11
|
Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates. NANOMATERIALS 2018; 8:nano8040195. [PMID: 29584691 PMCID: PMC5923525 DOI: 10.3390/nano8040195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 01/06/2023]
Abstract
New amphiphilic liquid crystal (LC) polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR) spectrum, 1H NMR, gel permeation chromatographic (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing optical microscope (POM), and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td), glass temperature (Tg), and isotropic temperature (Ti) increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX), together with drug release tracking, were evaluated by dynamic light scattering (DLS), SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications.
Collapse
|