1
|
Manjubaashini N, Daniel Thangadurai T. Unaided-eye detection of diverse Metal ions by AuNPs-based Nanocomposites: A Review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
2
|
Chang Y, Xia N, Huang Y, Sun Z, Liu L. In Situ Assembly of Nanomaterials and Molecules for the Signal Enhancement of Electrochemical Biosensors. NANOMATERIALS 2021; 11:nano11123307. [PMID: 34947656 PMCID: PMC8705329 DOI: 10.3390/nano11123307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
The physiochemical properties of nanomaterials have a close relationship with their status in solution. As a result of its better simplicity than that of pre-assembled aggregates, the in situ assembly of nanomaterials has been integrated into the design of electrochemical biosensors for the signal output and amplification. In this review, we highlight the significant progress in the in situ assembly of nanomaterials as the nanolabels for enhancing the performances of electrochemical biosensors. The works are discussed based on the difference in the interactions for the assembly of nanomaterials, including DNA hybridization, metal ion-ligand coordination, metal-thiol and boronate ester interactions, aptamer-target binding, electrostatic attraction, and streptavidin (SA)-biotin conjugate. We further expand the range of the assembly units from nanomaterials to small organic molecules and biomolecules, which endow the signal-amplified strategies with more potential applications.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
3
|
Advances in Colorimetric Assay Based on AuNPs Modified by Proteins and Nucleic Acid Aptamers. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review is focused on the biosensing assay based on AuNPs (AuNPs) modified by proteins, peptides and nucleic acid aptamers. The unique physical properties of AuNPs allow their modification by proteins, peptides or nucleic acid aptamers by chemisorption as well as other methods including physical adsorption and covalent immobilization using carbodiimide chemistry or based on strong binding of biotinylated receptors on neutravidin, streptavidin or avidin. The methods of AuNPs preparation, their chemical modification and application in several biosensing assays are presented with focus on application of nucleic acid aptamers for colorimetry assay for determination of antibiotics and bacteria in food samples.
Collapse
|
4
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Power AJ, Remediakis IN, Harmandaris V. Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles. Polymers (Basel) 2021; 13:541. [PMID: 33673125 PMCID: PMC7918087 DOI: 10.3390/polym13040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP.
Collapse
Affiliation(s)
- Albert J. Power
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Ioannis N. Remediakis
- Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion, Crete, Greece;
- Institute of Electronic Structure and Laser, (IESL), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
6
|
Tannic acid-coated gold nanorod as a spectrometric probe for sensitive and selective detection of Al3+ in aqueous system. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Citrate and Polyvinylpyrrolidone Stabilized Silver Nanoparticles as Selective Colorimetric Sensor for Aluminum (III) Ions in Real Water Samples. MATERIALS 2020; 13:ma13061373. [PMID: 32197492 PMCID: PMC7143323 DOI: 10.3390/ma13061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/23/2022]
Abstract
The use of silver nanoparticles stabilized with citrate and polyvinylpyrrolidone as a sensor for aluminum ions determination is proposed in this paper. These non-functionalized and specific nanoparticles provide a highly selective and sensitive detection system for aluminum in acidic solutions. The synthesized nanoparticles were characterized by transmission electron microscopy. Surface plasmon band deconvolution analysis was applied to study the interaction between silver nanoparticles and aluminum ions in solution. The interaction band in the UV-visible region was used as an analytical signal for quantitation purposes. The proposed detection system offers an effective AND wide linearity range (0.1–103 nM), specificity for Al(III) in THE presence of other metallic ions in solution, as well as high sensitivity (limit of detection = 40.5 nM). The proposed silver-nanoparticles-based sensor WAS successfully used for detecting Al(III) in real water samples.
Collapse
|
8
|
Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Sci Rep 2020; 10:4198. [PMID: 32144298 PMCID: PMC7060252 DOI: 10.1038/s41598-020-61130-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, the preparation of gold nanoparticles-silk fibroin (SF-AuNPs) dispersion and its label-free colorimetric detection of the organophosphate pesticide, namely chlorpyrifos, at ppb level are reported. The silk fibroin solution was extracted from B. mori silk after performing degumming, dissolving and dialysis steps. This fibroin solution was used for synthesis of gold nanoparticles in-situ without using any external reducing and capping agent. X-ray Diffractometry (XRD), Field Emission Transmission Electron Microscopy (FETEM) along with Surface Plasmon Resonance based optical evaluation confirmed generation of gold nanoparticles within SF matrix. The resultant SF-AuNPs dispersion exhibited rapid and excellent colorimetric pesticide sensing response even at 10 ppb concentration. Effect of additional parameters viz. pH, ionic concentration and interference from other pesticide samples was also studied. Notably, SF-AuNPs dispersion exhibited selective colorimetric pesticide sensing response which can be calibrated. Furthermore, this method was extended to various simulated real life samples such as tap water, soil and agricultural products including plant residues to successfully detect the presence of chlorpyrifos pesticide. The proposed colorimetric sensor system is facile yet effective and can be employed by novice rural population and expert researchers alike. It can be exploited as preliminary tool for label-free colorimetric chlorpyrifos pesticide sensing in water and agricultural products.
Collapse
|
9
|
Garg N, Bera S, Ballal A. SPR responsive xylenol orange functionalized gold nanoparticles- optical sensor for estimation of Al 3+ in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117701. [PMID: 31759883 DOI: 10.1016/j.saa.2019.117701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Xylenol orange functionalized gold nanoparticles (XO-AuNPs), prepared by reducing HAuCl4 in presence of xylenol orange were found to be selective and sensitive for optical sensing of Al3+ in water. XO-AuNPs nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS); the nanoparticles formed were of spherical shape and of uniform size of 3-12 nm. The interaction between Al3+ and XO-AuNPs at pH ~3 was studied by XPS analysis. XPS and TEM studies revealed that aggregation of XO-AuNPs in the presence of Al3+ takes place through analyte induced cross-linkage mechanism. Al3+ induced selective aggregation of the XO-AuNPs lead to a visual change in color of the colloidal solution from deep red to blue. The changes in characteristic absorption peak of XO-AuNPs were monitored; the ratio of A550nm/A515nm was used to quantify the concentration of Al3+ in water samples. The method gave a linear response from 50-300 ppb (R2 = 0.985) of Al3+ in drinking water with a detection limit of 12 ppb. The proposed method did not suffer any major interference from concomitant transition metal ions and anions. The developed method was simple, rapid and useful for determination of Al3+ in drinking water samples.
Collapse
Affiliation(s)
- Nidhi Garg
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad, 500062, India.
| | - Santanu Bera
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Anand Ballal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
10
|
Zhou H, Yang H, Wang G, Gao A, Yuan Z. Recent Advances of Plasmonic Gold Nanoparticles in Optical Sensing and Therapy. Curr Pharm Des 2020; 25:4861-4876. [DOI: 10.2174/1381612826666191219130033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
:
Gold nanoparticles with special surface plasmon resonance have been widely used in sensing and
therapy because of their easy preparation, unique optical properties, excellent biocompatibility, etc. The applications
of gold nanoparticles in chemo/biosensing, imaging, and therapy reported in 2016-2019, are summarized in
this review. Regarding the gold nanoparticle-based sensing or imaging, sensing mechanisms and strategies are
provided to illustrate the concepts for designing sensitive and selective detection platforms. Gold nanoparticlemediated
therapy is introduced by surface plasmon resonance-based therapy and delivery-based therapy. Beyond
the sole therapeutic system, platforms through synergistic therapy are also discussed. In the end, discussion of the
challenges and future trends of gold nanoparticle-based sensing and therapy systems is described.
Collapse
Affiliation(s)
- He Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongwei Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangke Wang
- Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China
| | - Aijun Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Saha S, Das S, Sahoo P. Highly Selective Optical and Fluorescence “Turn On” Signaling of Al
3+
: Cell Imaging and Estimation in Rice Plant. ChemistrySelect 2019. [DOI: 10.1002/slct.201903390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shrabani Saha
- Department of ChemistryVisva-BharatiUniversity Santiniketan 731235 India
| | - Sujoy Das
- Department of ChemistryVisva-BharatiUniversity Santiniketan 731235 India
| | - Prithidipa Sahoo
- Department of ChemistryVisva-BharatiUniversity Santiniketan 731235 India
| |
Collapse
|
12
|
Luo X, Xie X, Meng Y, Sun T, Ding J, Zhou W. Ligands dissociation induced gold nanoparticles aggregation for colorimetric Al 3+ detection. Anal Chim Acta 2019; 1087:76-85. [PMID: 31585569 DOI: 10.1016/j.aca.2019.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
Aluminum is a very important analyte, and developing biosensors for aluminum is an important analytical task. In this work, we report a novel mechanism to design colorimetric sensor based on gold nanoparticles (AuNPs). The AuNPs were prepared by reducing HAuCl4 using catechols, and the resulting AuNPs can be directly adapted for Al3+ detection without any post-modifications, showing high sensitivity and selectivity against other metal ions. Interestingly, our mechanistic studies revealed that Al3+-induced AuNPs aggregation was not due to the formation of interparticle crosslinks that refers to the design principle of most AuNPs-based colorimetric sensors reported before. But rather, Al3+ competitively coordinated with the capping ligands on AuNPs surface through the formation of stable Al-O bond, which dissociated these ligands from AuNPs surface. As a result, the AuNPs aggregated due to the loss of surface stabilizers. Based on this mechanism, several catechols, including pyrocatechol (PC), 3-(3,4-dihydroxyphenyl) propionic acid (DHCA), levodopa (LDA) and dopamine (DA), were used as reductant to prepare AuNPs for Al3+ sensing, and the AuNPs prepared by DA (AuNPs/DA) displayed the highest sensitivity, with detection limit of 0.81 μM. The sensor was then tested for Al content analysis in river water and food samples, and the results supported its practical applications. Importantly, this work expands the design principles for colorimetric sensors by using AuNPs.
Collapse
Affiliation(s)
- Xiaoli Luo
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410013, China
| | - Xin Xie
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410013, China
| | - Taoli Sun
- School of Pharmaceutical Sciences, Changsha Medical University, Changsha, Hunan, 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
13
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|