1
|
Eddy DR, Nur Sheha GA, Permana MD, Saito N, Takei T, Kumada N, Irkham, Rahayu I, Abe I, Sekine Y, Oyumi T, Izumi Y. Study on triphase of polymorphs TiO 2 (anatase/rutile/brookite) for boosting photocatalytic activity of metformin degradation. CHEMOSPHERE 2024; 351:141206. [PMID: 38219987 DOI: 10.1016/j.chemosphere.2024.141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
The elution of pharmaceutical products such as metformin at higher concentrations than the safe level in aquatic systems is a serious threat to human health and the ecosystem. Photocatalytic technology using TiO2 semiconductors potentially fixes this problem. This study aims to synthesize triphasic anatase-rutile-brookite TiO2 using ultrasound assisted sol-gel technique in the presence of acid and its application to photodegradation of metformin under UV light irradiation. Based on X-ray diffraction analysis, a TiO2 sample consisted of anatase (76%), rutile (7%), and brookite (17%) polymorph (A76R7B17) that was fully crystallized. Scanning electron microscopy (EM)-energy dispersive X-ray spectra results showed agglomerated triphasic A76R7B17 with irregular spherical clusters. Transmission EM results revealed that the crystal size of A76R7B17 was 4-14 nm. The Brunauer-Emmett-Teller analysis showed the sample's specific surface area of 149 m2 g-1. The degradation test of metformin demonstrated that the A76R7B17 exhibited a 75.4% degradation efficiency after 120 min under UV light irradiation, significantly higher than using biphasic and single-phase TiO2 photocatalysts. This difference could be attributed to the heterojunction effect of triphasic materials that effectively reduced electron-hole recombination rate as well as the combination of effective electron transfer from conduction band of brookite and anatase and the utilization of wider range of UV-visible light using rutile.
Collapse
Affiliation(s)
- Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
| | - Geometry Amal Nur Sheha
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Muhamad Diki Permana
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia; Special Educational Program for Green Energy Conversion Science and Technology, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, 400-8511, Japan; Center for Crystal Science and Technology, University of Yamanashi, Kofu, 400-8511, Japan
| | - Norio Saito
- Center for Crystal Science and Technology, University of Yamanashi, Kofu, 400-8511, Japan
| | - Takahiro Takei
- Center for Crystal Science and Technology, University of Yamanashi, Kofu, 400-8511, Japan
| | - Nobuhiro Kumada
- Center for Crystal Science and Technology, University of Yamanashi, Kofu, 400-8511, Japan
| | - Irkham
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Iman Rahayu
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Ikki Abe
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Yuta Sekine
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Tomoki Oyumi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Yasuo Izumi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
2
|
Xin Z, Zheng H, Hu J. Construction of Hollow Co 3O 4@ZnIn 2S 4 p-n Heterojunctions for Highly Efficient Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:758. [PMID: 36839125 PMCID: PMC9960535 DOI: 10.3390/nano13040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Photocatalysts derived from semiconductor heterojunctions for water splitting have bright prospects in solar energy conversion. Here, a Co3O4@ZIS p-n heterojunction was successfully created by developing two-dimensional ZnIn2S4 on ZIF-67-derived hollow Co3O4 nanocages, realizing efficient spatial separation of the electron-hole pair. Moreover, the black hollow structure of Co3O4 considerably increases the range of light absorption and the light utilization efficiency of the heterojunction avoids the agglomeration of ZnIn2S4 nanosheets and further improves the hydrogen generation rate of the material. The obtained Co3O4(20) @ZIS showed excellent photocatalytic H2 activity of 5.38 mmol g-1·h-1 under simulated solar light, which was seven times more than that of pure ZnIn2S4. Therefore, these kinds of constructions of hollow p-n heterojunctions have a positive prospect in solar energy conversion fields.
Collapse
|
3
|
A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. MEMBRANES 2022; 12:membranes12030345. [PMID: 35323821 PMCID: PMC8950424 DOI: 10.3390/membranes12030345] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Oilfield produced water (OPW) has become a primary environmental concern due to the high concentration of dissolved organic pollutants that lead to bioaccumulation with high toxicity, resistance to biodegradation, carcinogenicity, and the inhibition of reproduction, endocrine, and non-endocrine systems in aquatic biota. Photodegradation using photocatalysts has been considered as a promising technology to sustainably resolve OPW pollutants due to its benefits, including not requiring additional chemicals and producing a harmless compound as the result of pollutant photodegradation. Currently, titanium dioxide (TiO2) has gained great attention as a promising photocatalyst due to its beneficial properties among the other photocatalysts, such as excellent optical and electronic properties, high chemical stability, low cost, non-toxicity, and eco-friendliness. However, the photoactivity of TiO2 is still inhibited because it has a wide band gap and a low quantum field. Hence, the modification approaches for TiO2 can improve its properties in terms of the photocatalytic ability, which would likely boost the charge carrier transfer, prevent the recombination of electrons and holes, and enhance the visible light response. In this review, we provide an overview of several routes for modifying TiO2. The as-improved photocatalytic performance of the modified TiO2 with regard to OPW treatment is reviewed. The stability of modified TiO2 was also studied. The future perspective and challenges in developing the modification of TiO2-based photocatalysts are explained.
Collapse
|
4
|
Ponkshe A, Thakur P. Solar light-driven photocatalytic degradation and mineralization of beta blockers propranolol and atenolol by carbon dot/TiO 2 composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15614-15630. [PMID: 34628578 DOI: 10.1007/s11356-021-16796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Herein improved solar light-driven photocatalytic degradation and mineralization of two emerging pollutants as well as recalcitrant beta blockers propranolol (PR) and atenolol (AT) have been demonstrated by metal-free carbon dot/TiO2 (CDT) composite. Hydrothermally synthesized TiO2 has been decorated with electrochemically synthesized carbon dots (CDs) and was well characterized by various analytical techniques viz. XRD, FTIR, Raman, XPS, UV-visible DRS, FESEM, and TEM. The optimized CDT composite, 2CDT (2 mL carbon dot/TiO2), showed ~ 3.45- and ~ 1.75-fold enhancement in the photodegradation rate as compared to pristine TiO2 for PR and AT respectively in 1 hour of irradiation along with complete degradation of PR and AT after 3 hours of irradiation. 2CDT exhibited 76% and 80% mineralization of PR and AT in contrast with 62% and 47% observed by pristine TiO2. Further, the major reaction intermediates formed after degradation have been identified by HPLC/MS analysis, confirming more than 99% reduction of the parent compound for both PR and AT. Reusability of the optimized catalyst also showed successful degradation up to 3 cycles, showing reduction abilities of 97%, 95%, and 94% for 1st, 2nd, and 3rd cycle respectively. The enhanced degradation and mineralization efficiency of the 2CDT composite could be attributed to the excellent photosensitizer and electron reservoir properties of the CD along with upconverted photoluminescence behavior. The present study unlocks the possibility of using metal-free, facile CDT composite for effective degradation and mineralization of widely used beta blockers and other pharmaceuticals.
Collapse
Affiliation(s)
- Amruta Ponkshe
- Department of Environmental Sciences, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Pragati Thakur
- epartment of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune , 411007, India.
| |
Collapse
|
5
|
Mokrushin AS, Gorban YM, Simonenko NP, Simonenko TL, Simonenko EP, Sevastyanov VG, Kuznetsov NT. Synthesis and Gas-Sensitive Chemoresistive Properties of TiO2:Cu Nanocomposite. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621040173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sun L, Marques MAL, Botti S. Direct insight into the structure-property relation of interfaces from constrained crystal structure prediction. Nat Commun 2021; 12:811. [PMID: 33547276 PMCID: PMC7864966 DOI: 10.1038/s41467-020-20855-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
A major issue that prevents a full understanding of heterogeneous materials is the lack of systematic first-principles methods to consistently predict energetics and electronic properties of reconstructed interfaces. In this work we address this problem with an efficient and accurate computational scheme. We extend the minima-hopping method implementing constraints crafted for two-dimensional atomic relaxation and enabling variations of the atomic density close to the interface. A combination of density-functional and accurate density-functional tight-binding calculations supply energy and forces to structure prediction. We demonstrate the power of this method by applying it to extract structure-property relations for a large and varied family of symmetric and asymmetric tilt boundaries in polycrystalline silicon. We find a rich polymorphism in the interface reconstructions, with recurring bonding patterns that we classify in increasing energetic order. Finally, a clear relation between bonding patterns and electrically active grain boundary states is unveiled and discussed.
Collapse
Affiliation(s)
- Lin Sun
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Miguel A L Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- European Theoretical Spectroscopy Facility
| | - Silvana Botti
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Jena, Germany.
- European Theoretical Spectroscopy Facility, .
| |
Collapse
|
7
|
Facile Construction of All-Solid-State Z-Scheme g-C 3N 4/TiO 2 Thin Film for the Efficient Visible-Light Degradation of Organic Pollutant. NANOMATERIALS 2020; 10:nano10040600. [PMID: 32218201 PMCID: PMC7221626 DOI: 10.3390/nano10040600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 01/01/2023]
Abstract
The increasing discharge of dyes and antibiotic pollutants in water has brought serious environmental problems. However, it is difficult to remove such pollutants effectively by traditional sewage treatment technologies. Semiconductor photocatalysis is a new environment-friendly technique and is widely used in aqueous pollution control. TiO2 is one of the most investigated photocatalysts; however, it still faces the main drawbacks of a poor visible-light response and a low charge-separation efficiency. Moreover, powder photocatalyst is difficult to be recovered, which is another obstacle limiting the practical application. In this article, g-C3N4/TiO2 heterojunction is simply immobilized on a glass substrate to form an all-solid-state Z-scheme heterojunction. The obtained thin-film photocatalyst was characterized and applied in the visible-light photodegradation of colored rhodamine B and tetracycline hydrochloride. The photocatalytic performance is related to the deposited layers, and the sample with five layers shows the best photocatalytic efficiency. The thin-film photocatalyst is easy to be recovered with stability. The active component responsible for the photodegradation is identified and a Z-scheme mechanism is proposed.
Collapse
|
8
|
Wojtyła S, Śpiewak K, Baran T. Doped Graphitic Carbon Nitride: Insights from Spectroscopy and Electrochemistry. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01496-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interface between nanofillers and matrix plays a key role in determining the properties of nanocomposites, but the interfacial characteristics of nanocomposites such as molecular structure and interaction strength are not fully understood yet. In this work, the interfacial features of a typical nanocomposite, namely epoxy resin (EP) filled with boron nitride nanosheet (BNNS) are investigated by utilizing molecular dynamics simulation, and the effect of surface functionalization is analyzed. The radial distribution density (RDD) and interfacial binding energy (IBE) are used to explore the structure and bonding strength of nanocomposites interface. Besides, the interface compatibility and molecular chain mobility (MCM) of BNNS/EP nanocomposites are analyzed by cohesive energy density (CED), free volume fraction (FFV), and radial mean square displacement (RMSD). The results indicate that the interface region of BNNS/EP is composed of three regions including compact region, buffer region, and normal region. The structure at the interfacial region of nanocomposite is more compact, and the chain mobility is significantly lower than that of the EP away from the interface. Moreover, the interfacial interaction strength and compatibility increase with the functional density of BNNS functionalized by CH3–(CH2)4–O– radicals. These results adequately illustrate interfacial characteristics of nanocomposites from atomic level.
Collapse
|
10
|
Pylnev M, Wong MS. Comparative study of photocatalytic deactivation of pure and black titania thin films. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Integrating TiO₂/SiO₂ into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance. NANOMATERIALS 2019; 9:nano9010068. [PMID: 30621296 PMCID: PMC6359262 DOI: 10.3390/nano9010068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
In order to overcome the poor electrical conductivity of titania (TiO₂) and silica (SiO₂) anode materials for lithium ion batteries (LIBs), we herein report a facile preparation of integrated titania⁻silica⁻carbon (TSC) nanofibers via electrospinning and subsequent heat-treatment. Both titania and silica are successfully embedded into the conductive N-doped carbon nanofibers, and they synergistically reinforce the overall strength of the TSC nanofibers after annealing (Note that titania⁻carbon or silica⁻carbon nanofibers cannot be obtained under the same condition). When applied as an anode for LIBs, the TSC nanofiber electrode shows superior cycle stability (502 mAh/g at 100 mA/g after 300 cycles) and high rate capability (572, 518, 421, 334, and 232 mAh/g each after 10 cycles at 100, 200, 500, 1000 and 2000 mA/g, respectively). Our results demonstrate that integration of titania/silica into N-doped carbon nanofibers greatly enhances the electrode conductivity and the overall structural stability of the TSC nanofibers upon repeated lithiation/delithiation cycling.
Collapse
|
12
|
Li A, Wang T, Chang X, Zhao ZJ, Li C, Huang Z, Yang P, Zhou G, Gong J. Tunable syngas production from photocatalytic CO 2 reduction with mitigated charge recombination driven by spatially separated cocatalysts. Chem Sci 2018; 9:5334-5340. [PMID: 30155231 PMCID: PMC6011238 DOI: 10.1039/c8sc01812j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022] Open
Abstract
Photocatalytic CO2 reduction represents a sustainable route to generate syngas (the mixture of CO and H2), which is a key feedstock to produce liquid fuels in industry. Yet this reaction typically suffers from two limitations: unsuitable CO/H2 ratio and serious charge recombination. This paper describes the production of syngas from photocatalytic CO2 reduction with a tunable CO/H2 ratio via adjustment of the components and surface structure of CuPt alloys and construction of a TiO2 mesoporous hollow sphere with spatially separated cocatalysts to promote charge separation. Unlike previously reported cocatalyst-separated hollow structures, we firstly create a reductive outer surface that is suitable for the CO2 reduction reaction. A high evolution rate of 84.2 μmol h-1 g-1 for CO and a desirable CO/H2 ratio of 1 : 2 are achieved. The overall solar energy conversion yield is 0.108%, which is higher than those of traditional oxide and sulfide based catalysts (generally about 0.006-0.042%). Finally, density functional theory calculations and kinetic experiments by replacing H2O with D2O reveal that the enhanced activity is mainly determined by the reduction energy of CO* and can be affected by the stability of COOH*.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Tuo Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Xiaoxia Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Chengcheng Li
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Zhiqi Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Piaoping Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Guangye Zhou
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 92 , Tianjin 300072 , China .
| |
Collapse
|
13
|
Lamberti A. ZnO- and TiO₂-Based Nanostructures. NANOMATERIALS 2018; 8:nano8050325. [PMID: 29757977 PMCID: PMC5977339 DOI: 10.3390/nano8050325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Andrea Lamberti
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy.
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia (IIT@Polito), C.so Trento 21, 10129 Turin, Italy.
| |
Collapse
|