1
|
Raj M, Meena A, Seth R, Mathur A, Luqman S. An update on nanoformulations with FDA approved drugs for female reproductive cancer. J Microencapsul 2025:1-34. [PMID: 40114400 DOI: 10.1080/02652048.2025.2474457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
Collapse
Affiliation(s)
- Mahima Raj
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Gandidzanwa S, Beukes N, Joseph SV, Janse Van Vuuren A, Mashazi P, Britton J, Kilian G, Roux S, Nyokong T, Lee ME, Frost CL, Tshentu ZR. The development of folate-functionalised palladium nanoparticles for folate receptor targeting in breast cancer cells. NANOTECHNOLOGY 2023; 34:465705. [PMID: 37527629 DOI: 10.1088/1361-6528/acec52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Folate receptor-targeted therapy has excellent prospects for the treatment of breast cancer. A non-toxic concentration of folate-conjugated palladium-based nanoparticles was used to target the overexpressed folate receptor on breast cancer cells. The folate-conjugated nanoparticles were tailored to accumulate selectively in cancer cells relative to normal cells via the folate receptor. The MDA-MB-231, MDA-MB-468, MCF-7 breast cancer cell lines, and MCF-10A normal cell lines were used in the study. Qualitative and quantitative analysis of nanoparticle cellular uptake and accumulation was conducted using transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy. The findings proved that folate-conjugated palladium nanoparticles successfully and preferentially accumulated in breast cancer cells. We conclude that folate-conjugated palladium nanoparticles can be potentially used to target breast cancer cells for radiopharmaceutical applications.
Collapse
Affiliation(s)
| | - Natasha Beukes
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Sinelizwi V Joseph
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Arno Janse Van Vuuren
- Center for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Philani Mashazi
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Jonathan Britton
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Gareth Kilian
- Department of Pharmacy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Saartjie Roux
- Department of Human Physiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Michael E Lee
- Center for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Carminita L Frost
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Zenixole R Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
3
|
Wang H, Shao W, Lu X, Gao C, Fang L, Yang X, Zhu P. Synthesis, characterization, and in vitro anti-tumor activity studies of the hyaluronic acid-mangiferin-methotrexate nanodrug targeted delivery system. Int J Biol Macromol 2023; 239:124208. [PMID: 36972827 DOI: 10.1016/j.ijbiomac.2023.124208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
In this study, to increase the accumulation of MTX in the tumor site and reduce the toxicity to normal tissues by MA, a novel nano-drug delivery system comprised of hyaluronic acid (HA)-mangiferin (MA)-methotrexate (MTX) (HA-MA-MTX) was developed by a self-assembly strategy. The advantage of the nano-drug delivery system is that MTX can be used as a tumor-targeting ligand of the folate receptor (FA), HA can be used as another tumor-targeting ligand of the CD44 receptor, and MA serves as an anti-inflammatory agent. 1HNMR and FT-IR results confirmed that HA, MA, and MTX were well coupled together by the ester bond. DLS and AFM images revealed that the size of HA-MA-MTX nanoparticles was about ~138 nm. In vitro cell experiments proved that HA-MA-MTX nanoparticles have a positive effect on inhibiting K7 cancer cells while having relatively lower toxicity to normal MC3T3-E1 cells than MTX does. All these results indicated that the prepared HA-MA-MTX nanoparticles can be selectively ingested by K7 tumor cells through FA and CD44 receptor-mediated endocytosis, thus inhibiting the growth of tumor tissues and reducing the nonspecific uptake toxicity caused by chemotherapy. Therefore, these self-assembled HA-MA-MTX NPs could be a potential anti-tumor drug delivery system.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Wanfei Shao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Ling Fang
- Department of Dermatology, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214105, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, Jiangsu Province, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
4
|
Wang Y, Fu S, Lu Y, Lai R, Liu Z, Luo W, Xu Y. Chitosan/hyaluronan nanogels co-delivering methotrexate and 5-aminolevulinic acid: A combined chemo-photodynamic therapy for psoriasis. Carbohydr Polym 2022; 277:118819. [PMID: 34893236 DOI: 10.1016/j.carbpol.2021.118819] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
Psoriasis does not respond adequately to the monotherapy, tailoring combined strategies for synergistical treatment remains challenging. We fabricated chitosan/hyaluronan nanogels to co-load methotrexate (MTX) and 5-aminoleavulinic acid (ALA), i.e., MTX-ALA NGs, for a combined chemo-photodynamic therapy for psoriasis. Compared with MTX-ALA suspension, the NGs enhanced the penetration and retention of MTX and ALA through and into the skin in vitro and in vivo (p < 0.001). NGs enhanced the cellular uptake (p < 0.001), protoporphyrin IX conversion (p < 0.001), and reactive oxygen species generation (3.93-fold), subsequently exerted the synergistical anti-proliferation and apoptosis on lipopolysaccharide-irritated HaCaT cells with the apoptosis rate of 78.6%. MTX-ALA NGs efficiently ameliorated the skin manifestations and down-regulated the proinflammatory cytokines of TNF-α and IL-17A in imiquimod-induced psoriatic mice (p < 0.001). Importantly, MTX-ALA NGs reduced the toxicities of oral MTX to the liver and kidney. The results support that MTX-ALA NG is a convenient, effective, and safe combined chemo-photodynamic strategy for psoriasis treatment.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shijia Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongrong Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Nanoformulation Shows Cytotoxicity against Glioblastoma Cell Lines and Antiangiogenic Activity in Chicken Chorioallantoic Membrane. Pharmaceutics 2021; 13:pharmaceutics13060862. [PMID: 34208088 PMCID: PMC8230781 DOI: 10.3390/pharmaceutics13060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GB) is a histological and genetically heterogeneous brain tumor that is highly proliferative and vascularized. The prognosis is poor with currently available treatment. In this study, we evaluated the cytotoxicity and antiangiogenic activity of doxorubicin-loaded-chitosan-coated-arginylglycylaspartic acid-functionalized-poly(ε-caprolactone)-alpha bisabolol-LNC (AB-DOX-LNC-L-C-RGD). The nanoformulation was prepared by self-assembling followed by interfacial reactions, physicochemically characterized and evaluated in vitro against GB cell lines (U87MG and U138MG) and in vivo using the chicken chorioallantoic membrane assay (CAM). Spherical shape nanocapsules had a hydrodynamic mean diameter of 138 nm, zeta potential of +13.4 mV, doxorubicin encapsulation of 65%, and RGD conjugation of 92%. After 24 h of treatment (U87MG and U138MG), the median inhibition concentrations (IC50) were 520 and 490 nmol L−1 doxorubicin-equivalent concentrations, respectively. The treatment induced antiproliferative activity with S-phase cell-cycle arrest and apoptosis in the GB cells. Furthermore, after 48 h of exposure, evaluation of antiangiogenic activity (CAM) showed that the relative vessel growth following treatment with the nanocapsules was 5.4 times lower than that with the control treatment. The results support the therapeutic potential of the nanoformulation against GB and, thereby, pave the way for future preclinical studies.
Collapse
|
6
|
Kumar V, Kumar R, Jain VK, Nagpal S. Comparison of Virosome vs. Liposome as drug delivery vehicle using HepG2 and CaCo2 cell lines. J Microencapsul 2021; 38:263-275. [PMID: 33719838 DOI: 10.1080/02652048.2021.1902009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM The present work involves encapsulation of herbal drug nanocurcumin into the virosomes and compared with a liposome in terms of their in vitro anti-proliferative, anti-inflammatory, and anti-migratory efficacy. METHODS The anti-proliferative, anti-inflammatory, and anti-migratory efficacy of virosome and liposome were compared in HepG2 and CaCo2 cells by using MTT, Nitric oxide scavenging, and Wound healing assay, respectively. RESULTS Size of the optimised NC-Virosome and NC-Liposome was 70.06 ± 1.63 and 265.80 ± 1.64 nm, respectively. The prepared NC-Virosome can be stored at -4 °C up to six months. The drug encapsulation efficiency of NC-Virosome and NC-Liposome was found to be 84.66 ± 1.67 and 62.15 ± 1.75% (w/w). The evaluated minimum inhibitory concentration (IC50 value) for NC-Virosome was 102.7 μg/ml and 108.1 μg/ml, while NC-Liposome showed 129.2 μg/ml and 160.1 μg/ml for HepG2 and CaCo2 cells, respectively. Morphological examination depicts detachment of the cells from substratum after exposure to NC-Virosome for 48 h. CONCLUSION The prepared NC-Virosome provides remarkable in vitro efficacy in both the cell lines with site-specific drug-targeting potential as compared to the liposome, results proved its potential as a drug delivery vehicle for future therapy with reduced toxicity.
Collapse
Affiliation(s)
- Varun Kumar
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida, India
| | - Ramesh Kumar
- Virology Section, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - V K Jain
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida, India
| | - Suman Nagpal
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida, India
| |
Collapse
|
7
|
Cé R, Lavayen V, Couto GK, De Marchi JGB, Pacheco BZ, Natividade LA, Fracari TO, Ciocheta TM, de Cristo Soares Alves A, Jornada DS, Guterres SS, Seixas F, Collares T, Pohlmann AR. Folic Acid-Doxorubicin-Double-Functionalized-Lipid-Core Nanocapsules: Synthesis, Chemical Structure Elucidation, and Cytotoxicity Evaluation on Ovarian (OVCAR-3) and Bladder (T24) Cancer Cell Lines. Pharm Res 2021; 38:301-317. [PMID: 33608808 DOI: 10.1007/s11095-021-02989-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Folic acid-doxorubicin-double-functionalized-lipid-core nanocapsules (LNC-CS-L-Zn+2-DOX-FA) were prepared, characterized, and evaluated in vitro against ovarian and bladder cancer cell lines (OVCAR-3 and T24). METHODS LNC-CS-L-Zn+2-DOX-FA was prepared by self-assembly and interfacial reactions, and characterized using liquid chromatography, particle sizing, transmission electron microscopy, and infrared spectroscopy. Cell viability and cellular uptake were studied using MTT assay and confocal microscopy. RESULTS The presence of lecithin allows the formation of nanocapsules with a lower tendency of agglomeration, narrower size distributions, and smaller diameters due to an increase in hydrogen bonds at the surface. LNC-L-CS-Zn+2-DOX-FA, containing 98.00 ± 2.34 μg mL-1 of DOX and 105.00 ± 2.05 μg mL-1 of FA, had a mean diameter of 123 ± 4 nm and zeta potential of +12.0 ± 1.3 mV. After treatment with LNC-L-CS-Zn+2-DOX-FA (15 μmol L-1 of DOX), T24 cells had inhibition rates above 80% (24 h) and 90% (48 h), whereas OVCAR-3 cells showed inhibition rates of 68% (24 h) and 93% (48 h), showing higher cytotoxicity than DOX.HCl. The fluorescent-labeled formulation showed a higher capacity of internalization in OVCAR-3 compared to T24 cancer cells. CONCLUSION Lecithin favored the increase of hydrogen bonds at the surface, leading to a lower tendency of agglomeration for nanocapsules. LNC-CS-L-Zn+2-DOX-FA is a promising therapeutic agent against tumor-overexpressing folate receptors.
Collapse
Affiliation(s)
- Rodrigo Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil.
| | - Vladimir Lavayen
- Departamento de Química Inorgânica and Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Gabriela Klein Couto
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Cancer Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - João Guilherme Barreto De Marchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Barbara Zoche Pacheco
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Letícia Antunes Natividade
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Tiago Ost Fracari
- Departamento de Química Inorgânica and Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Taiane Medeiro Ciocheta
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Denise Soledade Jornada
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Fabiana Seixas
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Cancer Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Cancer Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil. .,Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
8
|
Assessment of pH Responsive Delivery of Methotrexate Based on PHEMA-st-PEG-DA Nanohydrogels. Macromol Res 2021. [DOI: 10.1007/s13233-021-9007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Kumar V, Kumar R, Jain VK, Nagpal S. Preparation and characterization of nanocurcumin based hybrid virosomes as a drug delivery vehicle with enhanced anticancerous activity and reduced toxicity. Sci Rep 2021; 11:368. [PMID: 33432002 PMCID: PMC7801424 DOI: 10.1038/s41598-020-79631-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
The present study represents a formulation of nanocurcumin based hybrid virosomes (NC-virosome) to deliver drugs at targeted sites. Curcumin is a bioactive component derived from Curcuma longa and well-known for its medicinal property, but it exhibits poor solubility and rapid metabolism, which led to low bioavailability and hence limits its applications. Nanocurcumin was prepared to increase the aqueous solubility and to overcome all the limitations associated with curcumin. Influenza virosomes were prepared by solubilization of the viral membrane with 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC). During membrane reconstitution, the hydrophilic nanocurcumin was added to the solvent system, followed by overnight dialysis to obtain NC-virosomes. The same was characterized using a transmission electron microscope (TEM) and scanning electron microscope (SEM), MTT assay was used to evaluate it's in vitro-cytotoxicity using MDA-MB231 and Mesenchyme stem cells (MSCs). The results showed NC-virosomes has spherical morphology with size ranging between 60 and 90 nm. It showed 82.6% drug encapsulation efficiency. The viability of MDA-MB231 cells was significantly inhibited by NC-virosome in a concentration-dependent manner at a specific time. The IC50 for nanocurcumin and NC-virosome was 79.49 and 54.23 µg/ml, respectively. The site-specific drug-targeting, high efficacy and non- toxicity of NC-virosomes proves its future potential as drug delivery vehicles.
Collapse
Affiliation(s)
- Varun Kumar
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida-201303, UP, India
| | - Ramesh Kumar
- Virology Section, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - V K Jain
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida-201303, UP, India
| | - Suman Nagpal
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida-201303, UP, India.
| |
Collapse
|
10
|
Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression. Eur J Pharm Biopharm 2020; 159:99-107. [PMID: 33358940 DOI: 10.1016/j.ejpb.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a non-resolving inflammatory condition that underlies major cardiovascular diseases.Recent clinical trial using an anti-inflammatory drug has showna reduction of cardiovascular mortality, but increased the susceptibility to infections. For this reason, tissue target anti-inflammatory therapies can represent a better option to regress atherosclerotic plaques. Docosahexaenoic acid (DHA) is a natural omega 3 fatty acidcomponentof algae oil and acts asaprecursor of several anti-inflammatory compounds, such the specialized proresolving lipid mediators(SPMs). During the atherosclerosis process, the inflammatory condition of the endothelium leads to the higher expression of adhesion molecules, such as Endothelial Cell Adhesion Molecule Plate 1 (PECAM-1 or CD31), as part of the innate immune response. Thus, the objective of this study was to develop lipid-core nanocapsules with DHA constituting the nucleus and anti-PECAM-1 on their surface and drive this structure to the inflamed endothelium. Nanocapsules were prepared by interfacial deposition of pre-formed polymer method. Zinc-II was added to bind anti-PECAM-1 to the nanocapsule surface by forming an organometallic complex. Swelling experiment showed that the algae oil act as non-solvent for the polymer (weight constant weight for 60 days, p > 0.428) indicating an adequate material to produce kinetically stable lipid-core nanocapsules (LNC). Five formulations were synthesized: Lipid-core nanocapsules containing DHA (LNC-DHA) or containing Medium-chain triglycerides (LNC-MCT), multi-wall nanocapsules containing DHA (MLNC-DHA) or containing MCT (MLNC-MCT) and the surface-functionalized (anti-PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1). All formulations showed homogeneous macroscopic aspects without aggregation. The mean size of the nanocapsules measured by laser diffraction did not show difference among the samples (p = 0.241). Multi-wall nanocapsules (MLNC) showed a slight increase in the mean diameter and polydispersity index (PDI) measured by DLS, lower pH and an inversion in the zeta-potential (ξP) compared to LNCs. Conjugation test for anti-PECAM-1 showed 94.80% of efficiency. The mean diameter of the formulation had slightly increased from 160 nm (LCN-DHA) and 162 nm (MLNC-DHA) to 164 nm (MCMN-DHA-a1) indicating that the surface functionalization did not induce aggregation of the nanocapsules. Biological assays showed that the MCMN-DHA-a1 were uptaken by the HUVEC cells and did not decrease their viability. The surface-functionalized (anti- PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1) can be considered adequate for pharmaceutical approaches.
Collapse
|
11
|
Yang V, Gouveia MJ, Santos J, Koksch B, Amorim I, Gärtner F, Vale N. Breast cancer: insights in disease and influence of drug methotrexate. RSC Med Chem 2020; 11:646-664. [PMID: 33479665 PMCID: PMC7578709 DOI: 10.1039/d0md00051e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization, cancer is one of the leading causes of morbidity and mortality worldwide. The previously estimated 14 million new cases in the year of 2012 are expected to rise, yearly, over the following 2 decades. Among women, breast cancer is the most common one. In 2012, almost 1.7 million people were diagnosed worldwide and half a million died from the disease. Despite having several treatments available, from surgery to chemotherapy, most of these treatments have severe adverse effects. Chemotherapy has a narrow therapeutic window and requires high dosage treatment in patients with advanced-stage cancers and further need innovative treatment strategies. Although methotrexate (MTX) is not a first line drug used against breast cancer, however, it might be valuable to fight the disease. MTX is an effective and cheap drug that might impair malignant growth without irreversible damage to normal tissues. Nevertheless, while MTX does present some disadvantages including poor solubility and low permeability, several strategies are being used to discover and provide novel and effective targeted treatment against breast cancer. In this review, we analyze the chemotherapy of breast cancer and its relationship with drug MTX.
Collapse
Affiliation(s)
- Vítor Yang
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Maria João Gouveia
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Joana Santos
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Beate Koksch
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Irina Amorim
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho, 45 , 4200-135 Porto , Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho, 45 , 4200-135 Porto , Portugal
| | - Nuno Vale
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho, 45 , 4200-135 Porto , Portugal
| |
Collapse
|
12
|
Miranda MA, Silva LB, Carvalho IPS, Amaral R, de Paula MH, Swiech K, Bastos JK, Paschoal JAR, Emery FS, Dos Reis RB, Bentley MVLB, Marcato PD. Targeted uptake of folic acid-functionalized polymeric nanoparticles loading glycoalkaloidic extract in vitro and in vivo assays. Colloids Surf B Biointerfaces 2020; 192:111106. [PMID: 32474325 DOI: 10.1016/j.colsurfb.2020.111106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Solanum lycocarpum fruits contain two major glycoalkaloids (GAs), solamargine (SM) and solasonine (SS). These compounds are reported as cytotoxic. However, they have poor water solubility and low bioavailability. To overcome these disadvantages and getting an efficient formulation the current study aimed to develop, characterize, and test the effectiveness of a nanotechnology-based strategy using poly(D,L-lactide) (PLA) nanoparticles functionalized with folate as delivery system of glycoalkaloidic extract (AE) for bladder cancer therapy. The strategic of adding folic acid into nanoformulations can increase the selectivity of the compounds to the cancer cells reducing the side effects. Our results revealed the successful preparation of AE-loaded folate-targeted nanoparticles (NP-F-AE) with particle size around 177 nm, negative zeta potential, polydispersity index <0.20, and higher efficiency of encapsulation for both GAs present in the extract (>85 %). To investigate the cellular uptake, the fluorescent dye coumarin-6 was encapsulated into the nanoparticle (NP-F-C6). The cell studies showed high uptake of nanoparticles by breast (MDA-MB-231) and bladder (RT4) cancer cells, but not for normal keratinocytes cells (HaCaT) indicating the target uptake to cancer cells. The cytotoxicity of nanoparticles was evaluated on RT4 2D culture model showing 2.16-fold lower IC50 than the free AE. Furthermore, the IC50 increased on the RT4 spheroids compared to 2D model. The nanoparticles penetrated homogeneously into the urotheliumof porcine bladder. These results showed that folate-conjugated polymeric nanoparticles are potential carriers for targeted glycoalkaloidic extract delivery to bladder cancer cells.
Collapse
Affiliation(s)
- M A Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - I P S Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M H de Paula
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - K Swiech
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J A R Paschoal
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F S Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R B Dos Reis
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M V L B Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - P D Marcato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Michalowski CB, Arbo MD, Altknecht L, Anciuti AN, Abreu ASG, Alencar LMR, Pohlmann AR, Garcia SC, Guterres SS. Oral Treatment of Spontaneously Hypertensive Rats with Captopril-Surface Functionalized Furosemide-Loaded Multi-Wall Lipid-Core Nanocapsules. Pharmaceutics 2020; 12:pharmaceutics12010080. [PMID: 31963659 PMCID: PMC7022513 DOI: 10.3390/pharmaceutics12010080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 11/16/2022] Open
Abstract
Multi-wall lipid-core nanocapsule (MLNC) functionalized with captopril and nanoencapsulating furosemide within the core was developed as a liquid formulation for oral administration. The nanocapsules had mean particle size below 200 nm, showing unimodal and narrow size distributions with moderate dispersity (laser diffraction and dynamic light scattering). Zeta potential was inverted from −14.3 mV [LNC-Fur(0,5)] to +18.3 mV after chitosan coating. Transmission electron microscopy and atomic force microscopy showed spherical structures corroborating the nanometric diameter of the nanocapsules. Regarding the systolic pressure, on the first day, the formulations showed antihypertensive effect and a longer effect than the respective drug solutions. When both drugs were associated, the anti-hypertensive effect was prolonged. On the fifth day, a time effect reduction was observed for all treatments, except for the nanocapsule formulation containing both drugs [Capt(0.5)-Zn(25)-MLNC-Fur(0.45)]. For diastolic pressure, only Capt(0.5)-Zn(25)-MLNC-Fur(0.45) presented a significant difference (p < 0.05) on the first day. On the fifth day, both Capt(0.5)-MLNC-Fur(0.45) and Capt(0.5)-Zn(25)-MLNC-Fur(0.45) had an effect lasting up to 24 h. The analysis of early kidney damage marker showed a potential protection in renal function by Capt(0.5)-Zn(25)-MLNC-Fur(0.45). In conclusion, the formulation Capt(0.5)-Zn(25)-MLNC-Fur(0.45) proved to be suitable for hypertension treatment envisaging an important innovation.
Collapse
Affiliation(s)
- Cecilia B Michalowski
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Marcelo D Arbo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Louise Altknecht
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Andréia N Anciuti
- Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre 90035-003, Brazil
| | - Angélica S G Abreu
- Laboratório de Microscopia Avançada, Departamento de Física, Universidade Federal do Ceara, Campus do Pici, Fortaleza 60455-900, Brazil
| | - Luciana M R Alencar
- Laboratório de Microscopia Avançada, Departamento de Física, Universidade Federal do Ceara, Campus do Pici, Fortaleza 60455-900, Brazil
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, PBox 15003, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Solange C Garcia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Sílvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| |
Collapse
|
14
|
Fasolato C, Giantulli S, Capocefalo A, Toumia Y, Notariello D, Mazzarda F, Silvestri I, Postorino P, Domenici F. Antifolate SERS-active nanovectors: quantitative drug nanostructuring and selective cell targeting for effective theranostics. NANOSCALE 2019; 11:15224-15233. [PMID: 31385577 DOI: 10.1039/c9nr01075k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the frontiers of nanomedicine is the rational design of theranostic nanovectors. These are nanosized materials combining diagnostic and therapeutic capabilities, i.e. capable of tracking cancer cells and tissues in complex environments, and of selectively acting against them. We herein report on the preparation and application of antifolate plasmonic nanovectors, made of functionalized gold nanoparticles conjugated with the folic acid competitors aminopterin and methotrexate. Due to the overexpression of folate binding proteins on many types of cancer cells, these nanosystems can be exploited for selective cancer cell targeting. The strong surface enhanced Raman scattering (SERS) signature of these nanovectors acts as a diagnostic tool, not only for tracing their presence in biological samples, but also, through a careful spectral analysis, to precisely quantify the amount of drug loaded on a single nanoparticle, and therefore delivered to the cells. Meanwhile, the therapeutic action is implemented based on the strong toxicity of antifolate drugs. Remarkably, supplying the drug in the nanostructured form, rather than as a free molecule, enhances its specific toxicity. The selectivity of the antifolate nanovectors can be optimized by the design of a hybrid folate/antifolate coloaded nanovector for the specific targeting of folate receptor α, which is overexpressed on numerous cancer cell types.
Collapse
Affiliation(s)
- Claudia Fasolato
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|
16
|
Hosseini S, Chamani J, Hadipanah MR, Ebadpour N, Hojjati AS, Mohammadzadeh MH, Rahimi HR. Nano-curcumin's suppression of breast cancer cells (MCF7) through the inhibition of cyclinD1 expression. BREAST CANCER-TARGETS AND THERAPY 2019; 11:137-142. [PMID: 30936742 PMCID: PMC6420787 DOI: 10.2147/bctt.s195800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Breast cancer is the leading cause of cancer worldwide. The high expenses associated with chemotherapy as well as its side effects make the management of breast cancer a daunting challenge. The most common overexpressed gene in breast cancer is cyclinD1, which induces cell proliferation. Recent investigations into cancer treatment have revealed that curcumin demonstrates potential anti-cancer properties through different pathways. However, the oral bioavailability of curcumin is negligible due to its high hydrophobic structure. Nanotechnology has been employed to overcome this barrier. Nano-formulated curcumin (SinaCurcumin®) has been shown to provide a significantly higher bioavailability for oral consumption. However, the efficacy of this nano-formulated drug in breast cancer has not yet been determined. In relation to the breast cancer cell line, the present study compared nano-curcumin’s anti-cancer properties with those of cyclophosphamide, adriamycin, and 5-fluorouracil (CAF). Methods After treating MCF7 with nano-curcumin and CAF, the present work assessed cell viability via an MTT assay. The effects of these drugs on cyclinD1 expression were measured by real-time PCR. SPSS 16.0 was used to perform ANOVA and multiple range tests. Results Nano-curcumin and the CAF regimen both lowered the viability of MCF7. Nano-curcumin decreased cell proliferation by 83.6%, which was more than that achieved by cyclophosphamide (63.31%), adriamycin (70.75%), and 5-fluorouracil (75.04%). In addition, curcumin was able to significantly reduce the expression of cyclinD1, whereas CAF did not alter cyclinD1 expression. Conclusion Nano-curcumin has a relatively high cytotoxic effect on MCF7 breast cancer cells, suppressing the expression of cyclinD1, a critical gene in the development and metastasis of breast cancer. The current study demonstrated that nano-curcumin can be an effective drug in the CAF regimen for the treatment of breast cancer. However, further in vivo research is needed for determining its efficacy and safety in clinical applications.
Collapse
Affiliation(s)
- Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Mohammad Reza Hadipanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sajjad Hojjati
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Rahimi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran, .,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,
| |
Collapse
|
17
|
Srivastava S, Mohammad S, Gupta S, Mahdi AA, Dixit RK, Singh V, Samadi FM. Chemoprotective effect of nanocurcumin on 5-fluorouracil-induced-toxicity toward oral cancer treatment. Natl J Maxillofac Surg 2018; 9:160-166. [PMID: 30546230 PMCID: PMC6251302 DOI: 10.4103/njms.njms_27_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Cancer of oral cavity is the uncontrolled expansion of damaged cell within the mouth cavity. 5-fluorouracil (5-FU) chemotherapy was focused to kill the cancer cell, but it would affect the surrounding normal cells during oral cancer treatment. This study included the evaluation of chemoprotective effects of curcumin (CU), as an herbal remedy, on 5-FU-induced-cytotoxicity toward oral cancer treatment, loaded within a nanocarrier system. CU was combined with 5-FU chemotherapy as a combinational drug-delivery system to evaluate synergistic effects. Materials and Methods Nanoformulation of CU (nano-CU) and nanoformulation of 5-FU (nano-FU) were prepared by employing homogenization with high-energy sonication. The characterizations of prepared nanoformulations were evaluated on the basis of particle size, zeta potential, and polydispersity index (PDI) values. The chemopreventive effect of nano-CU on 5-FU induced-toxicity and synergistic efficacy were optimized through different in-vitro assays. Results The average particle size of nano-CU and nano-FU were up to 200 nm, negatively-charged, and shown up to 4th-day control release of the drug within the acceptable concentration. IC50 value for growth inhibition was calculated as 47.89 and 26.19 μg/ml, respectively, for nano-CU and nano-FU. OCC was pretreated with nano-CU and shown the protective effect by reducing 5-FU induced-cytotoxicity by preventing normal cells through reduced viability. The DPPH-indicated fluorescence-tagged cells had quantified for antioxidant effect as it reduces intracellular reactive oxygen species level in OCC. Along with alteration in cell protein expression, Blc2, and Bax, shows enhanced apoptosis rate in OCC. Conclusion Nano-CU provides chemoprotective nature towards 5-FU induced-toxicity, along with synergistic effects in oral cancer treatment.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shadab Mohammad
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shalini Gupta
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Dixit
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vibha Singh
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Fahad Mansoor Samadi
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R, Liu H, Wang Y, Yan L, Chen S, Yang Q, Chen C. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018; 23:molecules23071578. [PMID: 29966245 PMCID: PMC6099699 DOI: 10.3390/molecules23071578] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022] Open
Abstract
Curcumin (Cur) has been widely used in medicine, due to its antibacterial, anti-inflammatory, antioxidant, and antitumor effects. However, its clinic application is limited by its instability and poor solubility. In the present wok, curcumin was loaded into solid lipid nanoparticles (SLNs), in order to improve the therapeutic efficacy for breast cancer. The results measured using transmission electron microscopy (TEM) indicated that Cur-SLNs have a well-defined spherical shape; the size was about 40 nm with a negative surface charge. The drug loading and encapsulation efficiency in SLNs reached 23.38% and 72.47%, respectively. The Cur-SLNs showed a stronger cytotoxicity against SKBR3 cells. In vitro cellular uptake study demonstrated a high uptake efficiency of the Cur-SLNs by SKBR3 cells. Moreover, Cur-SLNs induced higher apoptosis in SKBR3 cells, compared to cells treated by free drug. In addition, Western blot analysis revealed that Cur-SLNs could promote the ratio of Bax/Bcl-2, but decreased the expression of cyclin D1 and CDK4. These results suggested that Cur-SLNs could be a potential useful chemotherapeutic formulation for breast cancer therapy.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Tiantian Chen
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Henan Xu
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Baihui Ren
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Xiaodan Cheng
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Rongrong Qi
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Haibo Liu
- Department of Public Foundation, Bengbu Medical College, Bengbu 233030, China.
| | - Yueyue Wang
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Lei Yan
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Sulian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| |
Collapse
|