1
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
2
|
Eid K, Abdullah AM. Porous Ternary Pt-based Branched Nanostructures for Electrocatalytic Oxygen Reduction. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
3
|
Formation of Pt-Based Alloy Nanoparticles Assisted by Molybdenum Hexacarbonyl. NANOMATERIALS 2021; 11:nano11071825. [PMID: 34361211 PMCID: PMC8308230 DOI: 10.3390/nano11071825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
We report on an optimized, scalable solution-phase synthetic procedure for the fabrication of fine-tuned monodisperse nanostructures (Pt(NiCo), PtNi and PtCo). The influence of different solute metal precursors and surfactants on the morphological evolution of homogeneous alloy nanoparticles (NPs) has been investigated. Molybdenum hexacarbonyl (Mo(CO)6) was used as the reductant. We demonstrate that this solution-based strategy results in uniform-sized NPs, the morphology of which can be manipulated by appropriate selection of surfactants and solute metal precursors. Co-surfactants (oleylamine, OAm, and hexadecylamine, HDA) enabled the development of a variety of high-index faceted NP morphologies with varying degrees of curvatures while pure OAm selectively produced octahedral NP morphologies. This Mo(CO)6-based synthetic protocol offers new avenues for the fabrication of multi-structured alloy NPs as high-performance electrocatalysts.
Collapse
|
4
|
Pore Modification and Phosphorus Doping Effect on Phosphoric Acid-Activated Fe-N-C for Alkaline Oxygen Reduction Reaction. NANOMATERIALS 2021; 11:nano11061519. [PMID: 34201332 PMCID: PMC8229517 DOI: 10.3390/nano11061519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022]
Abstract
The price and scarcity of platinum has driven up the demand for non-precious metal catalysts such as Fe-N-C. In this study, the effects of phosphoric acid (PA) activation and phosphorus doping were investigated using Fe-N-C catalysts prepared using SBA-15 as a sacrificial template. The physical and structural changes caused by the addition of PA were analyzed by nitrogen adsorption/desorption and X-ray diffraction. Analysis of the electronic states of Fe, N, and P were conducted by X-ray photoelectron spectroscopy. The amount and size of micropores varied depending on the PA content, with changes in pore structure observed using 0.066 g of PA. The electronic states of Fe and N did not change significantly after treatment with PA, and P was mainly found in states bonded to oxygen or carbon. When 0.135 g of PA was introduced per 1 g of silica, a catalytic activity which was increased slightly by 10 mV at −3 mA/cm2 was observed. A change in Fe-N-C stability was also observed through the introduction of PA.
Collapse
|
5
|
Leteba GM, Mitchell DRG, Levecque PBJ, van Steen E, Lang CI. Topographical and compositional engineering of core-shell Ni@Pt ORR electro-catalysts. RSC Adv 2020; 10:29268-29277. [PMID: 35521089 PMCID: PMC9055937 DOI: 10.1039/d0ra05195k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Complex faceted geometries and compositional anisotropy in alloy nanoparticles (NPs) can enhance catalytic performance. We report on the preparation of binary PtNi NPs via a co-thermolytic approach in which we optimize the synthesis variables, which results in significantly improved catalytic performance. We used scanning transmission electron microscopy to characterise the range of morphologies produced, which included spherical and concave cuboidal core–shell structures. Electrocatalytic activity was evaluated using a rotating disc electrode (1600 rpm) in 0.1 M HClO4; the electrocatalytic performance of these Ni@Pt NPs showed significant (∼11-fold) improvement compared to a commercial Pt/C catalyst. Extended cycling revealed that electrochemical surface area was retained by cuboidal PtNi NPs post 5000 electrochemical cycles (0.05–1.00 V, vs. SHE). This is attributed to the enclosure of Ni atoms by a thick Pt shell, thus limiting Ni dissolution from the alloy structures. The novel synthetic strategy presented here results in a high yield of Ni@Pt NPs which show excellent electro-catalytic activity and useful durability. Complex faceted geometries and compositional anisotropy in alloy nanoparticles (NPs) can enhance catalytic performance.![]()
Collapse
Affiliation(s)
- Gerard M Leteba
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town Cape Town 7700 South Africa .,School of Engineering, Macquarie University Sydney NSW 2109 Australia
| | - David R G Mitchell
- Electron Microscopy Centre, Innovation Campus, University of Wollongong Wollongong NSW 2517 Australia
| | - Pieter B J Levecque
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town Cape Town 7700 South Africa
| | - Eric van Steen
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town Cape Town 7700 South Africa
| | - Candace I Lang
- School of Engineering, Macquarie University Sydney NSW 2109 Australia
| |
Collapse
|
6
|
Wu T, Kou Y, Zheng H, Lu J, Kadasala NR, Yang S, Guo C, Liu Y, Gao M. A Novel Au@Cu 2O-Ag Ternary Nanocomposite with Highly Efficient Catalytic Performance: Towards Rapid Reduction of Methyl Orange Under Dark Condition. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E48. [PMID: 31878173 PMCID: PMC7023264 DOI: 10.3390/nano10010048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Au@Cu2O core-shell nanocomposites (NCs) were synthesized by reducing copper nitrate on Au colloids with hydrazine. The thickness of the Cu2O shells could be varied by adjusting the molar ratios of Au: Cu. The results showed that the thickness of Cu2O shells played a crucial role in the catalytic activity of Au@Cu2O NCs under dark condition. The Au@Cu2O-Ag ternary NCs were further prepared by a simple galvanic replacement reaction method. Moreover, the surface features were revealed by TEM, XRD, XPS, and UV-Vis techniques. Compared with Au@Cu2O NCs, the ternary Au@Cu2O-Ag NCs had an excellent catalytic performance. The degradation of methyl orange (MO) catalyzed by Au@Cu2O-Ag NCs was achieved within 4 min. The mechanism study proved that the synergistic effects of Au@Cu2O-Ag NCs and sodium borohydride facilitated the degradation of MO. Hence, the designed Au@Cu2O-Ag NCs with high catalytic efficiency and good stability are expected to be the ideal environmental nanocatalysts for the degradation of dye pollutants in wastewater.
Collapse
Affiliation(s)
- Tong Wu
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yichuan Kou
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hui Zheng
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jianing Lu
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | | | - Shuo Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (S.Y.); (C.G.)
| | - Chenzi Guo
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (S.Y.); (C.G.)
| | - Yang Liu
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ming Gao
- College of Physics, Jilin Normal University, Siping 136000, China; (T.W.); (Y.K.); (H.Z.); (J.L.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
7
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|