1
|
Biosynthetic Silver Nanoparticles Inhibit the Malignant Behavior of Gastric Cancer Cells and Enhance the Therapeutic Effect of 5-Fluorouracil by Promoting Intracellular ROS Generation and Apoptosis. Pharmaceutics 2022; 14:pharmaceutics14102109. [PMID: 36297544 PMCID: PMC9609819 DOI: 10.3390/pharmaceutics14102109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Gastric cancer (GC) is the fourth leading cause of cancer death worldwide. Silver nanoparticles (Ag-NPs) have been increasingly used in the diagnosis and treatment of cancer due to their physicochemical properties. This study investigated the role of a kind of biosynthetic silver nanoparticle (b-Ag) in the development of GC, the enhancement of 5-fluorouracil (5F), and its mechanism. (2) Methods: X-ray, transmission electron microscopy (TEM), and UV absorbance were used to detect the characterizations of AgNPs. CCK8, Colony formation and a Transwell assay were performed to confirm the malignant behaviors of GC. DCFH-DA and DHE were used to detect intracellular reactive oxygen species (ROS). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of apoptosis-related genes. (3) Results: Compared with the chemosynthetic silver nanoparticles (c-Ag), b-Ag had a stronger cytokilling effect, and it had a better inhibition on the malignant phenotype of GC when combined with 5F. The b-Ag increased the expression of Bax and P53 while decreasing the expression of Bcl2. It also promoted the generation of intracellular ROS. (4) Conclusions: By promoting cell apoptosis and increasing intracellular ROS, b-Ag inhibited the development of GC and enhanced the inhibition of 5F on GC.
Collapse
|
2
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
3
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
4
|
Kovács D, Igaz N, Marton A, Rónavári A, Bélteky P, Bodai L, Spengler G, Tiszlavicz L, Rázga Z, Hegyi P, Vizler C, Boros IM, Kónya Z, Kiricsi M. Core-shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. J Nanobiotechnology 2020; 18:18. [PMID: 31964403 PMCID: PMC6974972 DOI: 10.1186/s12951-020-0576-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. Results We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. Conclusions Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.
Collapse
Affiliation(s)
- Dávid Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Annamária Marton
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Andrea Rónavári
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.,Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - Péter Bélteky
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás u. 2, 6725, Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás u. 2, 6725, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Korányi fasor 8-10, 6720, Szeged, Hungary.,MTA-SZTE Lendület Translational Gastroenterology Research Group, Korányi fasor 8-10, 6720, Szeged, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.,Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Zoltán Kónya
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary.,MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
5
|
Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. NANOMATERIALS 2019; 10:nano10010022. [PMID: 31861765 PMCID: PMC7022492 DOI: 10.3390/nano10010022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022]
Abstract
Poly(lactic acid) (PLA) is one of the most commonly employed synthetic biopolymers for facing plastic waste problems. Despite its numerous strengths, its inherent brittleness, low toughness, and thermal stability, as well as a relatively slow crystallization rate represent some limiting properties when packaging is its final intended application. In the present work, silver nanoparticles obtained from a facile and green synthesis method, mediated with chitosan as a reducing and stabilizing agent, have been introduced in the oligomeric lactic acid (OLA) plasticized PLA in order to obtain nanocomposites with enhanced properties to find potential application as antibacterial food packaging materials. In this way, the green character of the matrix and plasticizer was preserved by using an eco-friendly synthesis protocol of the nanofiller. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results proved the modification of the crystalline structure as well as the crystallinity of the pristine matrix when chitosan mediated silver nanoparticles (AgCH-NPs) were present. The final effect over the thermal stability, mechanical properties, degradation under composting conditions, and antimicrobial behavior when AgCH-NPs were added to the neat plasticized PLA matrix was also investigated. The obtained results revealed interesting properties of the final nanocomposites to be applied as materials for the targeted application.
Collapse
|
6
|
Bogireddy NKR, Agarwal V. Persea americana seed extract mediated gold nanoparticles for mercury(ii)/iron(iii) sensing, 4-nitrophenol reduction, and organic dye degradation. RSC Adv 2019; 9:39834-39842. [PMID: 35541370 PMCID: PMC9076207 DOI: 10.1039/c9ra08233f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, Persea americana (Avocado) seed extract mediated systematically optimized synthesis has been employed for the formation of small sized gold nanoparticles (Av-AuNPs) at different pH values. The size, shape and crystallinity of the as-prepared AuNPs have been studied using transmission electron microscopy and X-ray diffraction. The nanoparticles were found to be selective towards mercury(ii) upon the prior or subsequent addition of iron(iii), revealing a blue shift and an enhancement of the characteristic surface plasmon resonance (at 519 nm). Similar absorbance based selectivity has been observed towards Fe(iii) in the presence of Hg(ii). The high sensitivity and selectivity of Av-AuNPs towards Hg(ii) and Fe(iii) has been attributed to the formation of core-shell structures. From the UV-visible spectroscopic measurements, the limits of detection for Hg(ii) and Fe(iii) are found to be 50 nM and 30 nM (around one order of magnitude less than the Environment Protection Agency limit of 0.7 μM for Fe(iii) in drinking water) respectively, with an excellent linear dependence over a wide range of concentrations. Additionally, as-prepared Av-AuNPs have been demonstrated to be efficient in the reduction of organic pollutant 4-nitrophenol to 4-aminophenol and degradation of some organic dyes, such as Methylene Blue, Direct blue, Rhodamine 6G, Bromophenol blue and methyl orange. The use of the proposed Av-AuNPs for sensing and green catalysis can form the basis of high-performance analytical assays, effective multiplexed intracellular sensors, and sophisticated and sustainable probes/catalysts.
Collapse
Affiliation(s)
- Naveen Kumar Reddy Bogireddy
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM Av. Univ. 1001, Col. Chamilpa Cuernavaca Mexico
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM Av. Univ. 1001, Col. Chamilpa Cuernavaca Mexico
| |
Collapse
|
7
|
Abstract
This feature article begins by outlining the problem of infection and its implication on healthcare. The initial introductory section is followed by a description of the four distinct classes of antibacterial coatings and materials, i.e., bacteria repealing, contact killing, releasing and responsive, that were developed over the years by our team and others. Specific examples of each individual class of antibacterial materials and a discussion on the pros and cons of each strategy are provided. The article contains a dedicated section focused on silver nanoparticle based coatings and materials, which have attracted tremendous interest from the scientific and medical communities. The article concludes with the author’s view regarding the future of the field.
Collapse
|
8
|
Green Synthesis of Nanomaterials. NANOMATERIALS 2019; 9:nano9091275. [PMID: 31500230 PMCID: PMC6781268 DOI: 10.3390/nano9091275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
Nanomaterials possess stunning physical and chemical properties [...].
Collapse
|
9
|
Dzimitrowicz A, Cyganowski P, Jamroz P, Jermakowicz-Bartkowiak D, Rzegocka M, Cwiklinska A, Pohl P. Tuning Optical and Granulometric Properties of Gold Nanostructures Synthesized with the Aid of Different Types of Honeys for Microwave-Induced Hyperthermia. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E898. [PMID: 30889837 PMCID: PMC6471425 DOI: 10.3390/ma12060898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
Abstract
Size-controlled gold nanoparticles (AuNPs) were synthesised with solutions of three types of Polish honeys (lime, multiflower, honeydew) and used in microwave-induced hyperthermia cancer treatment. Optical and structural properties of nanostructures were optimized in reference to measurements made by using UV/Vis absorption spectrophotometry (UV/Vis), transmission electron microscopy (TEM) supported by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and attenuated total reflectance Fourier transformation infrared spectroscopy (ATR FT-IR). In addition, concentrations of reducing sugars and polyphenols of honeys applied were determined to reveal the role of these chemical compounds in green synthesis of AuNPs. It was found that the smallest AuNPs (20.6 ± 23.3 nm) were produced using a 20% (w/v) multiflower aqueous honey solution and 25 mg·L-1 of Au(III) ions. These AuNPs were then employed in microwave-induced hyperthermia in a system simulating metastatic tissues. This research illustrated that AuNPs, as produced with the aid of a multiflower honey solution, could be suitably used for microwave-induced heating of cancer. A fluid containing resultant Au nanostructures, as compared to water, revealed facilitated heating and the ability to maintain a temperature of 45 °C required for hyperthermia treatment.
Collapse
Affiliation(s)
- Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Piotr Cyganowski
- Department of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Dorota Jermakowicz-Bartkowiak
- Department of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Malgorzata Rzegocka
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Agnieszka Cwiklinska
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
10
|
Aflori M, Butnaru M, Tihauan BM, Doroftei F. Eco-Friendly Method for Tailoring Biocompatible and Antimicrobial Surfaces of Poly-L-Lactic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E428. [PMID: 30871241 PMCID: PMC6474018 DOI: 10.3390/nano9030428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
In this study, a facile, eco-friendly route, in two steps, for obtaining of poly-L-lactic acid/chitosan-silver nanoparticles scaffolds under quiescent conditions was presented. The method consists of plasma treatment and then wet chemical treatment of poly-L-lactic acid (PLLA) films in a chitosan based-silver nanoparticles solution (Cs/AgNp). The changes of the physical and chemical surface proprieties were studied using scanning electron microscopy (SEM), small angle X-Ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR) and profilometry methods. A certain combination of plasma treatment and chitosan-based silver nanoparticles solution increased the biocompatibility of PLLA films in combination with cell line seeding as well as the antimicrobial activity for gram-positive and gram-negative bacteria. The sample that demonstrated from Energy Dispersive Spectroscopy (EDAX) to have the highest amount of nitrogen and the smallest amount of Ag, proved to have the highest value for cell viability, demonstrating better biocompatibility and very good antimicrobial proprieties.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania.
| | - Maria Butnaru
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania.
| | - Bianca-Maria Tihauan
- Sanimed International IMPEX SRL, Sos. Bucuresti-Magurele, nr. 70F, Sector 5, Bucharest 051434, Romania.
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania.
| |
Collapse
|