1
|
Toufanian S, Sharma M, Xu F, Tayebi SS, McCabe C, Piliouras E, Hoare T. Electrospun "Hard-Soft" Interpenetrating Nanofibrous Tissue Scaffolds Facilitating Enhanced Mechanical Strength and Cell Proliferation. ACS Biomater Sci Eng 2024; 10:6887-6902. [PMID: 39367819 DOI: 10.1021/acsbiomaterials.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Mya Sharma
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Seyed Saeid Tayebi
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Christina McCabe
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Elaina Piliouras
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Chahsetareh H, Yazdian F, Pezeshki-Modaress M, Aleemardani M, Hassanzadeh S, Najafi R, Simorgh S, Taghdiri Nooshabadi V, Bagher Z, Davachi SM. Alginate hydrogel-PCL/gelatin nanofibers composite scaffold containing mesenchymal stem cells-derived exosomes sustain release for regeneration of tympanic membrane perforation. Int J Biol Macromol 2024; 262:130141. [PMID: 38365150 DOI: 10.1016/j.ijbiomac.2024.130141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Exosomes are among the most effective therapeutic tools for tissue engineering. This study demonstrates that a 3D composite scaffold containing exosomes can promote regeneration in rat tympanic membrane perforation (TMP). The scaffolds were characterized using scanning electron microscopy (SEM), degradation, PBS adsorption, swelling, porosity, and mechanical properties. To confirm the isolation of exosomes from human adipose-derived mesenchymal stem cells (hAMSCs), western blot, SEM, and dynamic light scattering (DLS) were performed. The Western blot test confirmed the presence of exosomal surface markers CD9, CD81, and CD63. The SEM test revealed that the isolated exosomes had a spherical shape, while the DLS test indicated an average diameter of 82.5 nm for these spherical particles. MTT assays were conducted to optimize the concentration of hAMSCs-exosomes in the hydrogel layer of the composite. Exosomes were extracted on days 3 and 7 from an alginate hydrogel containing 100 and 200 μg/mL of exosomes, with 100 μg/mL identified as the optimal value. The optimized composite scaffold demonstrated improved growth and migration of fibroblast cells. Animal studies showed complete tympanic membrane regeneration (TM) after five days. These results illustrate that a scaffold containing hAMSC-exosomes can serve as an appropriate tissue-engineered scaffold for enhancing TM regeneration.
Collapse
Affiliation(s)
- Hadi Chahsetareh
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran.
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK
| | - Sajad Hassanzadeh
- Eye Research Center, Five Senses Health Research Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Najafi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| |
Collapse
|
3
|
Howard CJ, Paul A, Duruanyanwu J, Sackho K, Campagnolo P, Stolojan V. The Manufacturing Conditions for the Direct and Reproducible Formation of Electrospun PCL/Gelatine 3D Structures for Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3107. [PMID: 38133004 PMCID: PMC10745430 DOI: 10.3390/nano13243107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Electrospinning is a versatile technique for fabricating nanofibrous scaffolds for tissue engineering applications. However, the direct formation of 3D sponges through electrospinning has previously not been reproducible. We used a Taguchi experimental design approach to optimise the electrospinning parameters for forming PCL and PCL/gelatine 3D sponges. The following parameters were investigated to improve sponge formation: solution concentration, humidity, and solution conductivity. Pure PCL sponges were achievable. However, a much fluffier sponge formed by increasing the solution conductivity with gelatine. The optimal conditions for sponge formation 24 w/v% 80:20 PCL:gelatine on aluminium foil at ≥70% humidity, 15 cm, 22 kV and 1500 µL/h. The resulting sponge had a highly porous structure with a fibre diameter of ~1 µm. They also supported significantly higher cell viability than 2D electrospun mats, dropcast films of the same material and even the TCP positive control. Our study demonstrates that the direct formation of PCL/gelatine 3D sponges through electrospinning is feasible and promising for tissue engineering applications. The sponges have a highly porous structure and support cell viability, which are essential properties for tissue engineering scaffolds. Further studies are needed to optimise the manufacturing process and evaluate the sponges' long-term performance in vivo.
Collapse
Affiliation(s)
- Chloe Jayne Howard
- Advanced Technology Institute, School of Computer Science and Electronic Engineering, University of Surrey, Guildford GU2 7XH, UK; (C.J.H.); (A.P.)
| | - Aumrita Paul
- Advanced Technology Institute, School of Computer Science and Electronic Engineering, University of Surrey, Guildford GU2 7XH, UK; (C.J.H.); (A.P.)
| | - Justin Duruanyanwu
- Department of Biochemical Sciences, University of Surrey, Guildford GU2 7XH, UK; (J.D.); (K.S.); (P.C.)
| | - Kenza Sackho
- Department of Biochemical Sciences, University of Surrey, Guildford GU2 7XH, UK; (J.D.); (K.S.); (P.C.)
| | - Paola Campagnolo
- Department of Biochemical Sciences, University of Surrey, Guildford GU2 7XH, UK; (J.D.); (K.S.); (P.C.)
| | - Vlad Stolojan
- Advanced Technology Institute, School of Computer Science and Electronic Engineering, University of Surrey, Guildford GU2 7XH, UK; (C.J.H.); (A.P.)
| |
Collapse
|
4
|
Mohammadi SS, Shafiei SS. Electrospun biodegradable scaffolds based on poly (ε-caprolactone)/gelatin containing titanium dioxide for bone tissue engineering application; in vitro study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2193582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Seyedeh Shima Mohammadi
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology, Tehran, Iran
| |
Collapse
|
5
|
Najafi R, Chahsetareh H, Pezeshki-Modaress M, Aleemardani M, Simorgh S, Davachi SM, Alizadeh R, Asghari A, Hassanzadeh S, Bagher Z. Alginate sulfate/ECM composite hydrogel containing electrospun nanofiber with encapsulated human adipose-derived stem cells for cartilage tissue engineering. Int J Biol Macromol 2023; 238:124098. [PMID: 36948341 DOI: 10.1016/j.ijbiomac.2023.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Stem cell therapy is a promising strategy for cartilage tissue engineering, and cell transplantation using polymeric scaffolds has recently gained attention. Herein, we encapsulated human adipose-derived stem cells (hASCs) within the alginate sulfate hydrogel and then added them to polycaprolactone/gelatin electrospun nanofibers and extracellular matrix (ECM) powders to mimic the cartilage structure and characteristic. The composite hydrogel scaffolds were developed to evaluate the relevant factors and conditions in mechanical properties, cell proliferation, and differentiation to enhance cartilage regeneration. For this purpose, different concentrations (1-5 % w/v) of ECM powder were initially loaded within an alginate sulfate solution to optimize the best composition for encapsulated hASCs viability. Adding 4 % w/v of ECM resulted in optimal mechanical and rheological properties and better cell viability. In the next step, electrospun nanofibrous layers were added to the alginate sulfate/ECM composite to prepare different layered hydrogel-nanofiber (2, 3, and 5-layer) structures with the ability to mimic the cartilage structure and function. The 3-layer structure was selected as the optimum layered composite scaffold, considering cell viability, mechanical properties, swelling, and biodegradation behavior; moreover, the chondrogenesis potential was assessed, and the results showed promising features for cartilage tissue engineering application.
Collapse
Affiliation(s)
- Roghayeh Najafi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | - Hadi Chahsetareh
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | | | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Hassanzadeh
- Eye Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The importance of electrospinning to produce biomimicking micro- and nano-fibrous matrices is realized by many who work in the area of fibers. Based on the solubility of the materials to be spun, organic solvents are typically utilized. The toxicity of the utilized organic solvent could be extremely important for various applications, including tissue engineering, biomedical, agricultural, etc. In addition, the high viscosities of such polymer solutions limit the use of high polymer concentrations and lower down productivity along with the limitations of obtaining desired fiber morphology. This emphasizes the need for a method that would allay worries about safety, toxicity, and environmental issues along with the limitations of using concentrated polymer solutions. To mitigate these issues, the use of emulsions as precursors for electrospinning has recently gained significant attention. Presence of dispersed and continuous phase in emulsion provides an easy route to incorporate sensitive bioactive functional moieties within the core-sheath fibers which otherwise could only be hardly achieved using cumbersome coaxial electrospinning process in solution or melt based approaches. This review presents a detailed understanding of emulsion behavior during electrospinning along with the role of various constituents and process parameters during fiber formation. Though many polymers have been studied for emulsion electrospinning, poly(ε-caprolactone) (PCL) is one of the most studied polymers for this technique. Therefore, electrospinning of PCL based emulsions is highlighted as unique case-study, to provide a detailed theoretical understanding, discussion of experimental results along with their suitable biomedical applications.
Collapse
|
7
|
Wang ZK, Li TT, Peng HK, Ren HT, Lin JH, Lou CW. Natural-clay-reinforced hydrogel adsorbent: Rapid adsorption of heavy-metal ions and dyes from textile wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10698. [PMID: 35373412 DOI: 10.1002/wer.10698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/05/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this study, two natural clay minerals were combined with hydrogels to study the influence of natural adsorbents on the adsorption performance of hydrogels. Here, we separately doped bentonite and vermiculite and discussed their mechanical properties and adsorption properties. It was found that the compressive performance of the hydrogel added with clay increased by 21.6% and the swelling performance decreased or increased to varying degrees. Regarding the adsorption performance of hydrogels, it can be seen from the adsorption Langmuir isotherm model that the adsorption capacity of clay-hydrogels is improved to varying degrees (6.6%-15.8%) compared with non-clay-hydrogels, and clay-hydrogels have different degrees of improvement (6.6%-15.8%). The hydrogel has a removal efficiency of more than 95% for low concentrations of heavy-metal ions and dyes. In addition, the clay-hydrogel has low cost and is easy to prepare, and can be recycled many times. Therefore, the material is of great significance for the treatment of pollutants. PRACTITIONER POINTS: The effect of natural clay on the adsorption performance of hydrogels was studied. Clay can enhance the compression and adsorption properties of hydrogels. The adsorption mechanism and adsorption capacity of clay hydrogels were evaluated.
Collapse
Affiliation(s)
- Zhi-Ke Wang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
De Stefano P, Federici AS, Draghi L. In Vitro Models for the Development of Peripheral Nerve Conduits, Part I: Design of a Fibrin Gel-Based Non-Contact Test. Polymers (Basel) 2021; 13:3573. [PMID: 34685331 PMCID: PMC8540146 DOI: 10.3390/polym13203573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Current clinical strategies to repair peripheral nerve injuries draw on different approaches depending on the extent of lost tissue. Nerve guidance conduits (NGCs) are considered to be a promising, off-the-shelf alternative to autografts when modest gaps need to be repaired. Unfortunately, to date, the implantation of an NGC prevents the sacrifice of a healthy nerve at the price of suboptimal clinical performance. Despite the significant number of materials and fabrication strategies proposed, an ideal combination has not been yet identified. Validation and comparison of NGCs ultimately requires in vivo animal testing due to the lack of alternative models, but in the spirit of the 3R principles, a reliable in vitro model for preliminary screening is highly desirable. Nevertheless, more traditional in vitro tests, and direct cell seeding on the material in particular, are not representative of the actual regeneration scenario. Thus, we have designed a very simple set-up in the attempt to appreciate the relevant features of NGCs through in vitro testing, and we have verified its applicability using electrospun NGCs. To this aim, neural cells were encapsulated in a loose fibrin gel and enclosed within the NGC membrane. Different thicknesses and porosity values of two popular polymers (namely gelatin and polycaprolactone) were compared. Results indicate that, with specific implementation, the system might represent a useful tool to characterize crucial NGC design aspects.
Collapse
Affiliation(s)
- Paola De Stefano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (A.S.F.); (L.D.)
| | - Angelica Silvia Federici
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (A.S.F.); (L.D.)
- Local Unit Politecnico di Milano, INSTM—National Interuniversity Consortium of Materials Science and Technology, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (A.S.F.); (L.D.)
- Local Unit Politecnico di Milano, INSTM—National Interuniversity Consortium of Materials Science and Technology, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
9
|
Thermal Stability and Dynamic Mechanical Properties of Poly( ε-caprolactone)/Chitosan Composite Membranes. MATERIALS 2021; 14:ma14195538. [PMID: 34639932 PMCID: PMC8509319 DOI: 10.3390/ma14195538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Poly (ε-caprolactone) (PCL) and chitosan (CS) are widely used as biodegradable and biocompatible polymers with desirable properties for tissue engineering applications. Composite membranes (CS-PCL) with various blend ratios (CS:PCL, w/w) of 0:100, 5:95, 10:90, 15:85, 20:80, and 100:0 were successfully prepared by lyophilization. The thermal stabilities of the CS-PCL membranes were systematically characterized by thermogravimetric analysis (TG), dynamic thermogravimetry (DTG), and differential scanning calorimetry (DSC). It was shown that the blend ratio of PCL and CS had a significant effect on the thermal stability, hydrophilicity, and dynamic mechanical viscoelasticity of the CS-PCL membranes. All the samples in the experimental range exhibited high elasticity at low temperature and high viscosity at high temperatures by dynamic mechanical thermal analysis (DMTA). The performances of the CS-PCL membranes were at optimum levels when the blend ratio (w/w) was 10:90. The glass transition temperature of the CS-PCL membranes increased from 64.8 °C to 76.6 °C compared to that of the pure PCL, and the initial thermal decomposition temperature reached 86.7 °C. The crystallinity and porosity went up to 29.97% and 85.61%, respectively, while the tensile strength and elongation at the breakage were 20.036 MPa and 198.72%, respectively. Therefore, the 10:90 (w/w) blend ratio of CS/PCL is recommended to prepare CS-PCL membranes for tissue engineering applications.
Collapse
|
10
|
Soares GODN, Lima FA, Goulart GAC, Oréfice RL. Physicochemical characterization of the gelatin/polycaprolactone nanofibers loaded with diclofenac potassium for topical use aiming potential anti-inflammatory action. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Flávia Alves Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials and Mining Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Joo G, Sultana T, Rahaman S, Bae SH, Jung HI, Lee BT. Polycaprolactone-gelatin membrane as a sealant biomaterial efficiently prevents postoperative anastomotic leakage with promoting tissue repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1530-1547. [PMID: 33849401 DOI: 10.1080/09205063.2021.1917107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anastomotic leakage due to post-surgical suture line disruption is one of the crucial factors affecting patient's survival and quality of life. To resolve the poor healing of surgical anastomosis and protect suture sites leakage, fibrous membrane sealing patch was developed using a synthetic polymer (polycaprolactone (PCL)) and biopolymer (gelatin). Electrospinning was used to develop fibrous architecture of membranes fabricated in different ratios (15% (w/v) PCL: 15% (w/v) gelatin mixing ratio of 1:1, 1:2, 1:3 and 1:4). Experimental findings suggested that, higher gelatin content in the membranes reduced the fiber diameter and contact angle, leading to a more hydrophilic scaffold facilitating attachment to the defect site. The degradation rate of various PCL-gelatin membranes (P1G1, P1G2, P1G3 and P1G4) was proportional to the gelatin content. Cytocompatibility was assessed using L929 cells while the P1G4 (PCL: gelatin 1:4 ratio) scaffold exhibited optimum outcome. From in vivo study, the wound site healed significantly without any leakage when the sutured area of rat caecum was covered with P1G4 membrane whereas rats in the control group (suture only) showed leakage after two weeks of surgery. In summary, the P1G4 membrane has potential to be applied as a post-surgical leakage-preventing tissue repair biomaterial.
Collapse
Affiliation(s)
- Gyeongjin Joo
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea.,Department of General Surgery, Soonchunhyang University Hospital 31, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea.,Department of General Surgery, Soonchunhyang University Hospital 31, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
12
|
Wang Z, Li TT, Peng HK, Ren HT, Lou CW, Lin JH. Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125029. [PMID: 33453669 DOI: 10.1016/j.jhazmat.2020.125029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels have extensively studied as adsorbents, raw materials for the preparation of adsorbent hydrogels have low strength, while high strength hydrogels have weak adsorption capacity. In this study, PVA hydrogel was crosslinked via trihydroxy melamine and epichlorohydrin, and β-cyclodextrin with strong adsorption capacity was added to remove the heavy metal ions. Results showed that the addition of trihydroxy melamine with 8%, the compressive strength of the hydrogel was increased by approximately 20%. The Langmuir isotherm model showed that the adsorption capacity of the hydrogel for Pb(II) and Ni(II) reached 505.9 mg/g and 286.7 mg/g, respectively, and the efficiency of removing the low-concentration heavy metal ions in water more than 99%. The hydrogel is low cost, and maintained highly removal efficiency under low pH. The removal efficiency of the hydrogel remained above 90% after five repeated adsorption-desorption experiments. The hydrogels have a potential to be used in wastewater treatment as adsorbents.
Collapse
Affiliation(s)
- Zhike Wang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan.
| |
Collapse
|
13
|
Zare P, Pezeshki-Modaress M, Davachi SM, Zare P, Yazdian F, Simorgh S, Ghanbari H, Rashedi H, Bagher Z. Alginate sulfate-based hydrogel/nanofiber composite scaffold with controlled Kartogenin delivery for tissue engineering. Carbohydr Polym 2021; 266:118123. [PMID: 34044939 DOI: 10.1016/j.carbpol.2021.118123] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/27/2022]
Abstract
In this study, we fabricated two different arrangements of laminated composite scaffolds based on Alginate:Alginate sulfate hydrogel, PCL:Gelatin electrospun mat, and Kartogenin-PLGA nanoparticles (KGN-NPs). The optimized composite scaffold revealed a range of advantages such as improved mechanical features as well as less potential of damage (less dissipated energy), interconnected pores of hydrogel and fiber with adequate pore size, excellent swelling ratio, and controlled biodegradability. Furthermore, the synthesized KGN-NPs with spherical morphology were incorporated into the composite scaffold and exhibited a linear and sustained release of KGN within 30 days with desirable initial burst reduction (12% vs. 20%). Additionally, the cytotoxicity impact of the composite was evaluated. Resazurin assay and Live/Dead staining revealed that the optimized composite scaffold has no cytotoxic effect and could improve cell growth. Overall, according to the enhanced mechanical features, suitable environment for cellular growth, and sustained drug release, the optimized scaffold would be a good candidate for tissue regeneration.
Collapse
Affiliation(s)
- Pariya Zare
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | | | - Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| | - Pouria Zare
- Department of Civil & Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran.
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hadi Ghanbari
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
14
|
Ulker Turan C, Guvenilir Y. Fabrication and characterization of electrospun biopolyester/gelatin nanofibers. J Biomed Mater Res B Appl Biomater 2021; 109:1478-1487. [PMID: 33527679 DOI: 10.1002/jbm.b.34807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Poly(ω-pentadecalactone-co-ε-caprolactone) copolymer (PDL-CL) is an enzymatically synthesized aliphatic biopolyester, which has been participated in a nanofibrous structure for the first time. Electrospinning of this synthetic polymer by blending with a natural polymer such as gelatin (Gel) could provide new characteristics that are significant for biomedical applications, such as drug delivery, wound healing, and tissue engineering. In the present study, PDL-CL/Gel nanofibrous membranes were successfully produced and characterized. The average diameter of nanofibers was 305.0 ± 45.5 nm that may be beneficial in applications mentioned above. In order to increase hydrolytic resistance, cross-linking with glutaraldehyde vapor was applied. Cross-linking for 2 h was enough to obtain a nanofibrous membrane that was able to resist in pH 7.4 phosphate buffered saline for 30 days. In addition, contact angle measurement results had shown that, cross-linked nanofibrous membrane had good wettability, which is a required specification to be applied in biomedical field. Hence, this study provides an overview on fabrication of fine PDL-CL/Gel nanofibers, which may have potential to be used in biomedical area.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yuksel Guvenilir
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Schoolaert E, Merckx R, Becelaere J, Everaerts M, Van Guyse JFR, Sedlacek O, De Geest BG, Van den Mooter G, D’hooge DR, De Clerck K, Hoogenboom R. Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- n-propyl-2-oxazoline). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ella Schoolaert
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
| | - Ronald Merckx
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Jana Becelaere
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
| | - Melissa Everaerts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Joachim F. R. Van Guyse
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Bruno G. De Geest
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Dagmar R. D’hooge
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium
| | - Karen De Clerck
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
| | - Richard Hoogenboom
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Duru Kamacı U, Kamacı M. Preparation of polyvinyl alcohol, chitosan and polyurethane-based pH-sensitive and biodegradable hydrogels for controlled drug release applications. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1670180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Umran Duru Kamacı
- Department of Chemistry, Faculty of Arts and Sciences, Yıldız Technical University, Esenler, Istanbul, Turkey
| | - Musa Kamacı
- Piri Reis University, Tuzla, Istanbul, Turkey
| |
Collapse
|
17
|
Wang Y, Guo Z, Qian Y, Zhang Z, Lyu L, Wang Y, Ye F. Study on the Electrospinning of Gelatin/Pullulan Composite Nanofibers. Polymers (Basel) 2019; 11:polym11091424. [PMID: 31480275 PMCID: PMC6780768 DOI: 10.3390/polym11091424] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, gelatin and pullulan were successfully prepared as a novel type of protein-polysaccharide composite nanofibrous membrane by electrospinning at room temperature with deionized water as the solvent. The effects of gelatin content on the properties of the solution, as well as the morphology of the resultant nanofibers, were investigated. Scanning electron microscopy (SEM) was utilized to observe the surface morphology. Fourier transform infrared spectroscopy (FTIR) was used to study the interaction between gelatin and pullulan. Incorporation of pullulan with gelatin will improve the spinnability of the mixed aqueous solution due to lower surface tension. Moreover, the conductivity of the solution had a greater effect on the fiber diameters, and the as-spun fibers became thinner as the viscosity and the surface tension increased due to the addition of the polyelectrolyte gelatin. Gelatin and pullulan formed hydrogen bonds, and the intermolecular hydrogen bonds increased while the intramolecular hydrogen bond decreased, which resulted in better mechanical properties. The electrospun gelatin/pullulan nanofibers could mimic both the structure and the composition of the extracellular matrix, and thus could be applied in tissue engineering.
Collapse
Affiliation(s)
- Yuanduo Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ziyang Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yongfang Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhen Zhang
- Sinomatech Membrane Material Company, Nanjing 211112, China
| | - Lihua Lyu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Ye
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
18
|
Joy J, Pereira J, Aid‐Launais R, Pavon‐Djavid G, Ray AR, Letourneur D, Meddahi‐Pellé A, Gupta B. Electrospun microporous gelatin–polycaprolactone blend tubular scaffold as a potential vascular biomaterial. POLYM INT 2019. [DOI: 10.1002/pi.5827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jincy Joy
- Bioengineering Laboratory, Department of Textile TechnologyIndian Institute of Technology New Delhi India
- Centre for Biomedical EngineeringIndian Institute of Technology New Delhi India
| | - Jessica Pereira
- INSERM, U1148, Laboratory for Vascular Translational Science (LVTS), Université Paris 13, Université Paris DiderotSorbonne Paris Cité, Hôpital Bichat Paris Cedex France
| | - Rachida Aid‐Launais
- INSERM, U1148, Laboratory for Vascular Translational Science (LVTS), Université Paris 13, Université Paris DiderotSorbonne Paris Cité, Hôpital Bichat Paris Cedex France
| | - Graciela Pavon‐Djavid
- INSERM, U1148, Laboratory for Vascular Translational Science (LVTS), Université Paris 13, Université Paris DiderotSorbonne Paris Cité, Hôpital Bichat Paris Cedex France
| | - Alok R Ray
- Centre for Biomedical EngineeringIndian Institute of Technology New Delhi India
| | - Didier Letourneur
- INSERM, U1148, Laboratory for Vascular Translational Science (LVTS), Université Paris 13, Université Paris DiderotSorbonne Paris Cité, Hôpital Bichat Paris Cedex France
| | - Anne Meddahi‐Pellé
- INSERM, U1148, Laboratory for Vascular Translational Science (LVTS), Université Paris 13, Université Paris DiderotSorbonne Paris Cité, Hôpital Bichat Paris Cedex France
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile TechnologyIndian Institute of Technology New Delhi India
| |
Collapse
|
19
|
The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning. NANOMATERIALS 2019; 9:nano9060843. [PMID: 31159474 PMCID: PMC6630586 DOI: 10.3390/nano9060843] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023]
Abstract
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of hydroxypropyl methylcellulose (HPMC) and ketoprofen as the core fluid, four kinds of nanofibers were prepared with ethanol as a sheath fluid and under the variable applied voltages. Based on these nanofibers, a series of relationships between the process parameters and the nanofibers’ diameters (D) were disclosed, such as with the height of the Taylor cone (H, D = 125 + 363H), with the angle of the Taylor cone (α, D = 1576 − 19α), with the length of the straight fluid jet (L, D = 285 + 209L), and with the spreading angle of the instable region (θ, D = 2342 − 43θ). In vitro dissolution tests verified that the smaller the diameters, the faster ketoprofen (KET) was released from the HPMC nanofibers. These concrete process-property relationships should provide a way to achieve new knowledge about the electrostatic energy-fluid interactions, and to meanwhile improve researchers’ capability to optimize the coaxial process conditions to achieve the desired nanoproducts.
Collapse
|
20
|
Morphology and Properties of Electrospun PCL and Its Composites for Medical Applications: A Mini Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112205] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polycaprolactone (PCL) is one of the most used synthetic polymers for medical applications due to its biocompatibility and slow biodegradation character. Combining the inherent properties of the PCL matrix with the characteristic of nanofibrous particles, result into promising materials that can be suitable for different applications, including the biomedical applications. The advantages of nanofibrous structures include large surface area, a small diameter of pores and a high porosity, which make them of great interest in different applications. Electrospinning, as technique, has been heavily used for the preparation of nano- and micro-sized fibers. This review discusses the different methods for the electrospinning of PCL and its composites for advanced applications. Furthermore, the steady state conditions as well as the effect of the electrospinning parameters on the resultant morphology of the electrospun fiber are also reported.
Collapse
|
21
|
Chen J, Hu H, Feng L, Zhu Q, Hancharou A, Liu B, Yan C, Xu Y, Guo R. Preparation and characterization of 3D porous conductive scaffolds with magnetic resonance enhancement in tissue engineering. Biomed Mater 2019; 14:045013. [DOI: 10.1088/1748-605x/ab1d9c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Miroshnichenko S, Timofeeva V, Permykova E, Ershov S, Kiryukhantsev-Korneev P, Dvořaková E, Shtansky DV, Zajíčková L, Solovieva A, Manakhov A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E637. [PMID: 31010178 PMCID: PMC6523319 DOI: 10.3390/nano9040637] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds for wound healing requires a certain modification of the PCL surface. In this work, the morphology of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding of NH2 groups of protein molecules is a rather simple and technologically accessible procedure allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior of fibroblasts on the modified PCL surface was found to be very different when compared to the previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze-thawed platelet-rich plasma (PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the potential of PCL matrices for application in tissue engineering, while the plasma modification with COOH groups and their subsequent covalent binding with proteins expand this potential even further. The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged biological activity of the immobilized molecules and protects these biomolecules from the aggressive media of the wound.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
- Institute of Biochemistry ⁻ subdivision of the FRC FTM, 2 Timakova str., 630117 Novosibirsk, Russia.
| | - Valeriia Timofeeva
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| | - Elizaveta Permykova
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Sergey Ershov
- Physics and Materials Science Research Unit, Laboratory for the Physics of Advanced Materials, University of Luxembourg, 162a, avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg.
| | - Philip Kiryukhantsev-Korneev
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Eva Dvořaková
- CEITEC-Central European Institute of Technology-Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Dmitry V Shtansky
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Lenka Zajíčková
- CEITEC-Central European Institute of Technology-Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Anastasiya Solovieva
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| | - Anton Manakhov
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| |
Collapse
|
23
|
Chen D, Zhu T, Fu W, Zhang H. Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-hydroxysuccinimide and genipin facilitate endothelial cell regeneration and may be a promising candidate for vascular scaffolds. Int J Nanomedicine 2019; 14:2127-2144. [PMID: 30988613 PMCID: PMC6440451 DOI: 10.2147/ijn.s192699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose A promising vascular scaffold must possess satisfying mechanical properties, great hemocompatibility, and favorable tissue regeneration. Combining natural with synthetic materials is a popular method of creating/enhancing such scaffolds. However, the effect of additional modification on the materials requires further exploration. Materials and methods We selected polycaprolactone (PCL), which has excellent mechanical properties and biocompatibility and can be combined with collagen. Electrospun fibers created using a PCL/collagen solution were used to fashion mixed nanofibers, while separate syringes of PCL and collagen were used to create separated nanofibers, resulting in different pore sizes. Mixed and separated nanofibers were cross-linked with glutaraldehyde (GA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and genipin; hence, we named them as mixed GA, mixed EDC (ME), mixed genipin (MG), separated GA, separated EDC (SE), and separated genipin (SG). Results Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction showed that cross-linking did not affect the main functional groups of fibers in all groups. ME, MG, SE, and SG met the requisite mechanical properties, and they also resisted collagenase degradation. In hemocompatibility assays, only ME and MG demonstrated ideal safety. Furthermore, ME and MG presented the greatest cytocompatibility. For vascular scaffolds, rapid endothelialization helps to prevent thrombosis. According to human umbilical vein endothelial cell migration on different nanofibers, ME and MG are also successful in promoting cell migration. Conclusion ME and MG may be promising candidates for vascular tissue engineering. The study suggests that collagen cross-linked by EDC/N-hydroxysuccinimide or genipin facilitates endothelial cell regeneration, which could be of great benefit in tissue engineering of vascular scaffolds.
Collapse
Affiliation(s)
- Dian Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Tonghe Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Department of Sports Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|