Tang Z, Jiang Z, Chen H, Su P, Wu W. Energy decomposition analysis based on broken symmetry unrestricted density functional theory.
J Chem Phys 2020;
151:244106. [PMID:
31893870 DOI:
10.1063/1.5114611]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this paper, the generalized Kohn-Sham energy decomposition analysis (GKS-EDA) scheme is extended to molecular interactions in open shell singlet states, which is a challenge for many popular EDA methods due to the multireference character. Based on broken symmetry (BS) unrestricted density functional theory with a spin projection approximation, the extension scheme, named GKS-EDA(BS) in this paper, divides the total interaction energy into electrostatic, exchange-repulsion, polarization, correlation, and dispersion terms. Test examples include the pancake bond in the phenalenyl dimer, the ligand interactions in the Fe(ii)-porphyrin complexes, and the radical interactions in dehydrogenated guanine-cytosine base pairs and show that GKS-EDA(BS) is a practical EDA tool for open shell singlet systems.
Collapse