1
|
Kunene K, Sayegh S, Weber M, Sabela M, Voiry D, Iatsunskyi I, Coy E, Kanchi S, Bisetty K, Bechelany M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Ranganath K, Gupta P, Kumar N. Asymmetric Suzuki Cross Coupling Reactions Catalyzed by Chiral Surfactants Stabilized Palladium Nanoparticles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Pranshu Gupta
- Banaras Hindu University Department of Chemistry Centre of Advanced Study, Institute of Science 221005 Varanasi INDIA
| | - Neeraj Kumar
- Banaras Hindu University Department of Chemistry Centre of Advanced Study, Institute of Science 221005 Varanasi INDIA
| |
Collapse
|
3
|
Zuo Y, Wang Z, Zhao H, Zhao L, Zhang L, Yi B, Bao W, Zhang Y, Su L, Yu Y, Xie J. Synthesis of a Spatially Confined, Highly Durable, and Fully Exposed Pd Cluster Catalyst via Sequential Site-Selective Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14466-14473. [PMID: 35312273 DOI: 10.1021/acsami.2c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bottom-up synthesis based on site-selective atomic layer deposition is a powerful atomic-scale processing approach to fabricate materials with desired functionalities. Typical selective atomic layer deposition (ALD) can be achieved using selective activation of a growth area or selective deactivation of a protected area. In this work, we explored the site selectivity based on the difference of the inherent surface reactivity between different materials and within the same materials. By sequentially applying two site-selective atomic layer deposition, the ALD Pd catalyst is spatially confined on ALD SnO2 modified h-BN substrate Pd/SnO2/h-BN shows improved catalytic activity and stability due to strong metal-support interactions and spatial confinement. The results reveal that sequential site-selective ALD is a feasible and effective synthesis strategy that provides an attractive path toward designing and developing highly stable catalysts.
Collapse
Affiliation(s)
- Yuqing Zuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zeyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haojie Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lianqi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lunjia Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Beili Yi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenda Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Longxing Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Wang B, Sun L, Schneider-Ramelow M, Lang KD, Ngo HD. Recent Advances and Challenges of Nanomaterials-Based Hydrogen Sensors. MICROMACHINES 2021; 12:1429. [PMID: 34832840 PMCID: PMC8626019 DOI: 10.3390/mi12111429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022]
Abstract
Safety is a crucial issue in hydrogen energy applications due to the unique properties of hydrogen. Accordingly, a suitable hydrogen sensor for leakage detection must have at least high sensitivity and selectivity, rapid response/recovery, low power consumption and stable functionality, which requires further improvements on the available hydrogen sensors. In recent years, the mature development of nanomaterials engineering technologies, which facilitate the synthesis and modification of various materials, has opened up many possibilities for improving hydrogen sensing performance. Current research of hydrogen detection sensors based on both conservational and innovative materials are introduced in this review. This work mainly focuses on three material categories, i.e., transition metals, metal oxide semiconductors, and graphene and its derivatives. Different hydrogen sensing mechanisms, such as resistive, capacitive, optical and surface acoustic wave-based sensors, are also presented, and their sensing performances and influence based on different nanostructures and material combinations are compared and discussed, respectively. This review is concluded with a brief outlook and future development trends.
Collapse
Affiliation(s)
- Bei Wang
- Department of Microsystem Technology, University of Applied Sciences Berlin, 12459 Berlin, Germany
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
| | - Ling Sun
- Department of Mathematics, Free University Berlin, 14195 Berlin, Germany;
| | - Martin Schneider-Ramelow
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
- Center of Microperipheric Technologies, Technical University Berlin, 13355 Berlin, Germany
| | - Klaus-Dieter Lang
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
- Center of Microperipheric Technologies, Technical University Berlin, 13355 Berlin, Germany
| | - Ha-Duong Ngo
- Department of Microsystem Technology, University of Applied Sciences Berlin, 12459 Berlin, Germany
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
| |
Collapse
|
5
|
Zou Y, Cheng C, Guo Y, Ong AJ, Goei R, Li S, Yoong Tok AI. Atomic layer deposition of rhodium and palladium thin film using low-concentration ozone. RSC Adv 2021; 11:22773-22779. [PMID: 35480446 PMCID: PMC9034295 DOI: 10.1039/d1ra03942c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Rhodium (Rh) and palladium (Pd) thin films have been fabricated using an atomic layer deposition (ALD) process using Rh(acac)3 and Pd(hfac)2 as the respective precursors and using short-pulse low-concentration ozone as the co-reactant. This method of fabrication does away with the need for combustible reactants such as hydrogen or oxygen, either as a precursor or as an annealing agent. All previous studies using only ozone could not yield metallic films, and required post treatment using hydrogen or oxygen. In this work, it was discovered that the concentration level of ozone used in the ALD process was critical in determining whether the pure metal film was formed, and whether the metal film was oxidized. By controlling the ozone concentration under a critical limit, the fabrication of these noble metal films was successful. Rhodium thin films were deposited between 200 and 220 °C, whereas palladium thin films were deposited between 180 and 220 °C. A precisely controlled low ozone concentration of 1.22 g m-3 was applied to prevent the oxidation of the noble metallic film, and to ensure fast growth rates of 0.42 Å per cycle for Rh, and 0.22 Å per cycle for Pd. When low-concentration ozone was applied to react with ligand, no excess ozone was available to oxidize the metal products. The surfaces of deposited films obtained the RMS roughness values of 0.30 nm for Rh and 0.13 nm for Pd films. The resistivities of 18 nm Rh and 22 nm Pd thin films were 17 μΩ cm and 63 μΩ cm.
Collapse
Affiliation(s)
- Yiming Zou
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| | - Chunyu Cheng
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| | - Yuanyuan Guo
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| | - Amanda Jiamin Ong
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| | - Ronn Goei
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
6
|
Mahmoudpour M, Karimzadeh Z, Ebrahimi G, Hasanzadeh M, Ezzati Nazhad Dolatabadi J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit Rev Anal Chem 2021; 52:1818-1845. [PMID: 33980072 DOI: 10.1080/10408347.2021.1919987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Owing to the high toxicity and large-scale use of pesticides, it is imperative to develop selective, sensitive, portable, and convenient sensors for rapid monitoring of pesticide. Therefore, the electrochemical detection platform offers a promising analytical approach since it is easy to operate, economical, efficient, and user-friendly. Meanwhile, with advances in functional nanomaterials and aptamer selection technologies, numerous sensitivity-enhancement techniques alongside a widespread range of smart nanomaterials have been merged to construct novel aptamer probes to use in the biosensing field. Hence, this study intends to highlight recent development and promising applications on the functional nanomaterials with aptamers for pesticides detection based on electrochemical strategies. We also reviewed the current novel aptamer-functionalized microdevices for the portability of pesticides sensors. Furthermore, the major challenges and future prospects in this field are also discussed to provide ideas for further research.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Feng S, Ren Y, Li H, Tang Y, Yan J, Shen Z, Zhang H, Chen F. Cancer Cell-Membrane Biomimetic Boron Nitride Nanospheres for Targeted Cancer Therapy. Int J Nanomedicine 2021; 16:2123-2136. [PMID: 33731994 PMCID: PMC7959002 DOI: 10.2147/ijn.s266948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/14/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Nanomaterial-based drug-delivery systems allowing for effective targeted delivery of smallmolecule chemodrugs to tumors have revolutionized cancer therapy. Recently, as novel nanomaterials with outstanding physicochemical properties, boron nitride nanospheres (BNs) have emerged as a promising candidate for drug delivery. However, poor dispersity and lack of tumor targeting severely limit further applications. In this study, cancer cell-membrane biomimetic BNs were designed for targeted anticancer drug delivery. METHODS Cell membrane extracted from HeLa cells (HM) was used to encapsulate BNs by physical extrusion. Doxorubicin (Dox) was loaded onto HM-BNs as a model drug. RESULTS The cell-membrane coating endowed the BNs with excellent dispersibility and cytocompatibility. The drug-release profile showed that the Dox@HM-BNs responded to acid pH, resulting in rapid Dox release. Enhanced cellular uptake of Dox@HM-BNs by HeLa cells was revealed because of the homologous targeting of cancer-cell membranes. CCK8 and live/dead assays showed that Dox@HM-BNs had stronger cytotoxicity against HeLa cells, due to self-selective cellular uptake. Finally, antitumor investigation using the HeLa tumor model demonstrated that Dox@HM-BNs possessed much more efficient tumor inhibition than free Dox or Dox@BNs. CONCLUSION These findings indicate that the newly developed HM-BNs are promising as an efficient tumor-selective drug-delivery vehicle for tumor therapy.
Collapse
Affiliation(s)
- Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Yajing Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Hui Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Yunfei Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Jinyu Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Zeyuan Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Huijie Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| |
Collapse
|
8
|
Cortese R, Campisi D, Prestianni A, Duca D. Alkane dehydrogenation on defective BN quasi-molecular nanoflakes: DFT studies. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
|
10
|
Weber M, Bechelany M. Combining nanoparticles grown by ALD and MOFs for gas separation and catalysis applications. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSupported metallic nanoparticles (NPs) are essential for many important chemical processes. In order to implement precisely tuned NPs in miniaturized devices by compatible processes, novel nanoengineering routes must be explored. Atomic layer deposition (ALD), a scalable vapor phase technology typically used for the deposition of thin films, represents a promising new route for the synthesis of supported metallic NPs. Metal–organic frameworks (MOFs) are a new exciting class of crystalline porous materials that have attracted much attention in the recent years. Since the size of their pores can be precisely adjusted, these nanomaterials permit highly selective separation and catalytic processes. The combination of NPs and MOF is an emerging area opening numbers of applications, which still faces considerable challenges, and new routes need to be explored for the synthesis of these NPs/MOF nanocomposites. The aim of this paper is double: first, it aims to briefly present the ALD route and its use for the synthesis of metallic NPs. Second, the combination of ALD-grown NPs and MOFs has been explored for the synthesis of Pd NPs/MOF ZIF-8, and several selected examples were ALD-grown NPs and MOFs have been combined and applied gas separation and catalysis will be presented.
Collapse
Affiliation(s)
- Matthieu Weber
- Institut Européen des membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mikhael Bechelany
- Institut Européen des membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
11
|
Weber M, Drobek M, Rebière B, Charmette C, Cartier J, Julbe A, Bechelany M. Hydrogen selective palladium-alumina composite membranes prepared by Atomic Layer Deposition. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Ansari MZ, Nandi DK, Janicek P, Ansari SA, Ramesh R, Cheon T, Shong B, Kim SH. Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43608-43621. [PMID: 31633331 DOI: 10.1021/acsami.9b15790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present an atomic layer deposition (ALD) process for the synthesis of tin nitride (SnNx) thin films using tetrakis(dimethylamino) tin (TDMASn, Sn(NMe2)4) and ammonia (NH3) as the precursors at low deposition temperatures (70-200 °C). This newly developed ALD scheme exhibits ideal ALD features such as self-limited film growth at 150 °C. The growth per cycle (GPC) was found to be ∼0.21 nm/cycle at 70 °C, which decreased with increasing deposition temperature. Interestingly, when the deposition temperature was between 125 and 180 °C, the GPC remained almost constant at ∼0.10 nm/cycle, which suggests an ALD temperature window, whereas upon further increasing the temperature to 200 °C, the GPC considerably decreased to ∼0.04 nm/cycle. Thermodynamic analysis via density functional theory calculations showed that the self-saturation of TDMASn would occur on an NH2-terminated surface. Moreover, it also suggests that the condensation of a molecular precursor and the desorption of surface *NH2 moieties would occur at lower and higher temperatures outside the ALD window, respectively. Thanks to the characteristics of ALD, this process could be used to conformally and uniformly deposit SnNx onto an ultranarrow dual-trench Si structure (minimum width: 15 nm; aspect ratio: ∼6.3) with ∼100% step coverage. Several analysis tools such as transmission electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and secondary-ion mass spectrometry were used to characterize the film properties under different deposition conditions. XRD showed that a hexagonal SnN phase was obtained at a relatively low deposition temperature (100-150 °C), whereas cubic Sn3N4 was formed at a higher deposition temperature (175-200 °C). The stoichiometry of these thermally grown ALD-SnNx films (Sn-to-N ratio) deposited at 150 °C was determined to be ∼1:0.93 with negligible impurities. The optoelectronic properties of the SnNx films, such as the band gap, wavelength-dependent refractive index, extinction coefficient, carrier concentration, and mobility, were further evaluated via spectroscopic ellipsometry analysis. Finally, ALD-SnNx-coated Ni-foam (NF) and hollow carbon nanofibers were successfully used as free-standing electrodes in electrochemical supercapacitors and in Li-ion batteries, which showed a higher charge-storage time (about eight times greater than that of the uncoated NF) and a specific capacity of ∼520 mAh/g after 100 cycles at 0.1 A/g, respectively. This enhanced performance might be due to the uniform coverage of these substrates by ALD-SnNx, which ensures good electric contact and mechanical stability during electrochemical reactions.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and Engineering , Yeungnam University , Gyeongsan 712-749 , Korea
| | - Dip K Nandi
- School of Materials Science and Engineering , Yeungnam University , Gyeongsan 712-749 , Korea
| | - Petr Janicek
- Institute of Applied Physics and Mathematics, Faculty of Chemical Technology , University of Pardubice , Studentska 95 , Pardubice 532 10 , Czech Republic
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology , University of Pardubice , Studentska 95 , Pardubice 532 10 , Czech Republic
| | - Sajid Ali Ansari
- Department of Physics, College of Science , King Faisal University , Al-Ahsa 31982 , Kingdom of Saudi Arabia
| | - Rahul Ramesh
- School of Materials Science and Engineering , Yeungnam University , Gyeongsan 712-749 , Korea
| | - Taehoon Cheon
- School of Materials Science and Engineering , Yeungnam University , Gyeongsan 712-749 , Korea
- Center for Core Research Facilities , Daegu Gyeongbuk Institute of Science & Technology , Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873 , Republic of Korea
| | - Bonggeun Shong
- Department of Chemical Engineering , Hongik University , Mapo-gu, Seoul 04066 , Republic of Korea
| | - Soo-Hyun Kim
- School of Materials Science and Engineering , Yeungnam University , Gyeongsan 712-749 , Korea
| |
Collapse
|
13
|
Cortese R, Campisi D, Duca D. Hydrogen Arrangements on Defective Quasi-Molecular BN Fragments. ACS OMEGA 2019; 4:14849-14859. [PMID: 31552324 PMCID: PMC6751536 DOI: 10.1021/acsomega.9b01445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Considering the ever-increasing interest in metal-free materials, some potential chemical applications of quasi-molecular boron nitride (BN) derivatives were tested. Specifically, the behavior of BN fragments was analyzed when given defects, producing local electron density changes, were introduced by using topological engineering approaches. The inserted structural faults were Schottky-like divacancy (BN-d) defects, assembled in the fragment frame by the subtraction of one pair of B and N atoms or Stone-Wales (SW) defects. This study is aimed at highlighting the role of these important classes of defects in BN materials hypothesizing their future use in H2-based processes, related to either (i) H2 activation or (ii) H2 production, from preadsorbed hydrogenated molecular species on BN sites. Here, it has been observed that BN species, embodying SW defects, are characterized by endothermic H2 adsorption and fragmentation phenomena in order to guess their potential use in processes based on the transformation or production of hydrogen. On the contrary, in the presence of BN-d defects, and for reasons strictly related to local structural changes occurring along with the hydrogen rearrangements on the defective BN fragments, a possible use can be inferred. Precautions must be however taken to decrease the material rigidity that could actually decrease the ability of the BN fragment to flatten. This conversely seems to be a necessary requirement to have strong exothermic effects, following the rearrangements of the H2 molecules.
Collapse
Affiliation(s)
| | | | - Dario Duca
- E-mail: . Phone: +39 091
23897975. Fax: +39 091 590015
| |
Collapse
|