1
|
Imbia AS, Ounkaew A, Mao X, Zeng H, Liu Y, Narain R. Mussel-Inspired Polymer-Based Coating Technology for Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10957-10965. [PMID: 38752656 DOI: 10.1021/acs.langmuir.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices. The present work aims to develop a facile method by covalently grafting zwitterionic and cationic copolymers containing aldehydes to the remaining amine groups of self-polymerized dopamine. Reversible addition-fragmentation chain transfer polymerization was used to copolymerize either zwitterionic 2-methacryloyloxyethyl phosphorylcholine monomer (MPC) or cationic 2-(methacryloyloxy)ethyl trimethylammonium monomer (META) with 4-formyl phenyl methacrylate monomer (FPMA), and the formed copolymers poly(MPC-st-FPMA) and poly(META-st-FPMA) are denoted as MPF and MTF, respectively. MPF and MTF copolymers were then covalently grafted onto the amino groups of polydopamine-coated surfaces. PDA/MPF/MTF-coated surfaces exhibited antibacterial and antifouling properties against S. aureus, E. coli, and bovine serum albumin protein. In addition, they showed excellent viability of normal human lung fibroblast cells MRC-5. We expect the facile surface modification strategy discussed here to be applicable to medical device manufacturing.
Collapse
Affiliation(s)
- Adel S Imbia
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Artjima Ounkaew
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
2
|
Díaz-Cuenca A, Sezanova K, Gergulova R, Rabadjieva D, Ruseva K. New Nano-Crystalline Hydroxyapatite-Polycarboxy/Sulfo Betaine Hybrid Materials: Synthesis and Characterization. Molecules 2024; 29:930. [PMID: 38474442 DOI: 10.3390/molecules29050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Hybrid materials based on calcium phosphates and synthetic polymers can potentially be used for caries protection due to their similarity to hard tissues in terms of composition, structure and a number of properties. This study is focused on the biomimetic synthesis of hybrid materials consisting of hydroxiapatite and the zwitterionic polymers polysulfobetaine (PSB) and polycarboxybetaine (PCB) using controlled media conditions with a constant pH of 8.0-8.2 and Ca/P = 1.67. The results show that pH control is a dominant factor in the crystal phase formation, so nano-crystalline hydroxyapatite with a Ca/P ratio of 1.63-1.71 was observed as the mineral phase in all the materials prepared. The final polymer content measured for the synthesized hybrid materials was 48-52%. The polymer type affects the final microstructure, and the mineral particle size is thinner and smaller in the synthesis performed using PCB than using PSB. The final intermolecular interaction of the nano-crystallized hydroxyapatite was demonstrated to be stronger with PCB than with PSB as shown by our IR and Raman spectroscopy analyses. The higher remineralization potential of the PCB-containing synthesized material was demonstrated by in vitro testing using artificial saliva.
Collapse
Affiliation(s)
- Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain
| | - Kostadinka Sezanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rumiana Gergulova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Diana Rabadjieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstans Ruseva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
3
|
Gu Y, Li Y, Wu Q, Wu Z, Sun L, Shang Y, Zhuang Y, Fan X, Yi L, Wang S. Chemical antifouling strategies in sensors for food analysis: A review. Compr Rev Food Sci Food Saf 2023; 22:4074-4106. [PMID: 37421317 DOI: 10.1111/1541-4337.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Surface biofouling induced by the undesired nonspecific adsorption of foulants (e.g., coexisting proteins and cells) in food matrices is a major issue of sensors for food analysis, hindering their reliability and accuracy of sensing. This issue can be addressed by developing antifouling strategies to prevent or alleviate nonspecific binding. Chemical antifouling strategies involve the use of chemical modifiers (i.e., antifouling materials) to strongly hydrate the surface and reduce surface biofouling. Through appropriate immobilization approaches, antifouling materials can be tethered onto sensors to form antifouling surfaces with well-ordered structures, balanced surface charges, and appropriate surface density and thickness. A rational antifouling surface can reduce the matrix effect, simplify sample pretreatment, and improve analytical performance. This review summarizes recent developments in chemical antifouling strategies in sensing. Surface antifouling mechanisms and common antifouling materials are described, and factors that may influence the antifouling effects of antifouling surfaces and approaches incorporating antifouling materials onto sensing surfaces are highlighted. Moreover, the specific applications of antifouling sensors in food analysis are introduced. Finally, we provide an outlook on future developments in antifouling sensors for food analysis.
Collapse
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yonghui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qiyue Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zhongdong Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Parcheta M, Sobiesiak M. Preparation and Functionalization of Polymers with Antibacterial Properties-Review of the Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4411. [PMID: 37374596 PMCID: PMC10304131 DOI: 10.3390/ma16124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
The presence of antibiotic-resistant bacteria in our environment is a matter of growing concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest data on the ability to remove bacteria from potable water and wastewater. The article discusses the mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations (polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for precise targeting of drugs to infected cells as a preventive measure against the excessive spread of antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from essential oils (EOs), or natural polymers modified with organic acids are promising materials in the removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks to multi-point attachment to microorganisms. New achievements in the field of polymer surface modification in order to impart antimicrobial properties were summarized.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| | - Magdalena Sobiesiak
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| |
Collapse
|
5
|
Police Patil AV, Chuang YS, Li C, Wu CC. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. BIOSENSORS 2023; 13:bios13010125. [PMID: 36671960 PMCID: PMC9855954 DOI: 10.3390/bios13010125] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 05/31/2023]
Abstract
Electrochemical immunosensors have attracted immense attention due to the ease of mass electrode production and the high compatibility of the miniature electric reader, which is beneficial for developing point-of-care diagnostic devices. Electrochemical immunosensors can be divided into label-free and label-based sensing strategies equipped with potentiometric, amperometric, voltammetric, or impedimetric detectors. Emerging nanomaterials are frequently used on electrochemical immunosensors as a highly rough and conductive interface of the electrodes or on nanocarriers of immobilizing capture antibodies, electroactive mediators, or catalyzers. Adopting nanomaterials can increase immunosensor characteristics with lower detection limits and better sensitivity. Recent research has shown innovative immobilization procedures of nanomaterials which meet the requirements of different electrochemical immunosensors. This review discusses the past five years of advances in nanomaterials (metal nanoparticles, metal nanostructures, carbon nanotubes, and graphene) integrated into the electrochemical immunosensor. Furthermore, the new tendency and endeavors of nanomaterial-based electrochemical immunosensors are discussed.
Collapse
Affiliation(s)
- Avinash V. Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Yu-Sheng Chuang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, Tulane University, 1324 Tulane Ave., New Orleans, LA 70112, USA
| | - Ching-Chou Wu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| |
Collapse
|
6
|
Polybetaines in Biomedical Applications. Int J Mol Sci 2021; 22:ijms22179321. [PMID: 34502230 PMCID: PMC8430529 DOI: 10.3390/ijms22179321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Polybetaines, that have moieties bearing both cationic (quaternary ammonium group) and anionic groups (carboxylate, sulfonate, phosphate/phosphinate/phosphonate groups) situated in the same structural unit represent an important class of smart polymers with unique and specific properties, belonging to the family of zwitterionic materials. According to the anionic groups, polybetaines can be divided into three major classes: poly(carboxybetaines), poly(sulfobetaines) and poly(phosphobetaines). The structural diversity of polybetaines and their special properties such as, antifouling, antimicrobial, strong hydration properties and good biocompatibility lead to their use in nanotechnology, biological and medical fields, water remediation, hydrometallurgy and the oil industry. In this review we aimed to highlight the recent developments achieved in the field of biomedical applications of polybetaines such as: antifouling, antimicrobial and implant coatings, wound healing and drug delivery systems.
Collapse
|
7
|
Wu C, Zheng J, Hu J. Novel antifouling polysulfone matrix membrane modified with zwitterionic polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Patel R, Patel M, Sung JS, Kim JH. Preparation and characterization of bioinert amphiphilic P(VDF-co-CTFE)-g-POEM graft copolymer. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rajkumar Patel
- Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, 85 Songdogwahak‐ro, Yeonsu‐gu, South Korea
| | - Madhumita Patel
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Jung-Suk Sung
- Department of Life Sciences, Dongguk University-Seoul, Biomedi Campus, Goyang-si, Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
9
|
Nikam SP, Chen P, Nettleton K, Hsu YH, Becker ML. Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications. Biomacromolecules 2020; 21:2714-2725. [DOI: 10.1021/acs.biomac.0c00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shantanu P. Nikam
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Peiru Chen
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Karissa Nettleton
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Yen-Hao Hsu
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Sudre G, Siband E, Gallas B, Cousin F, Hourdet D, Tran Y. Responsive Adsorption of N-Isopropylacrylamide Based Copolymers on Polymer Brushes. Polymers (Basel) 2020; 12:polym12010153. [PMID: 31936092 PMCID: PMC7022643 DOI: 10.3390/polym12010153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 01/12/2023] Open
Abstract
We investigate the adsorption of pH- or temperature-responsive polymer systems by ellipsometry and neutron reflectivity. To this end, temperature-responsive poly (N-isopropylacrylamide) (PNIPAM) brushes and pH-responsive poly (acrylic acid) (PAA) brushes have been prepared using the "grafting onto" method to investigate the adsorption process of polymers and its reversibility under controlled environment. To that purpose, macromolecular brushes were designed with various chain lengths and a wide range of grafting density. Below the transition temperature (LCST), the characterization of PNIPAM brushes by neutron reflectivity shows that the swelling behavior of brushes is in good agreement with the scaling models before they collapse above the LCST. The reversible adsorption on PNIPAM brushes was carried out with linear copolymers of N-isopropylacrylamide and acrylic acid, P(NIPAM-co-AA). While these copolymers remain fully soluble in water over the whole range of temperature investigated, a quantitative adsorption driven by solvophobic interactions was shown to proceed only above the LCST of the brush and to be totally reversible upon cooling. Similarly, the pH-responsive adsorption driven by electrostatic interactions on PAA brushes was studied with copolymers of NIPAM and N,N-dimethylaminopropylmethacrylamide, P(NIPAM-co-MADAP). In this case, the adsorption of weak polycations was shown to increase with the ionization of the PAA brush with interactions mainly located in the upper part of the brush at pH 7 and more deeply adsorbed within the brush at pH 9.
Collapse
Affiliation(s)
- Guillaume Sudre
- Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5223, 69100 Villeurbanne, France
- Correspondence: (G.S.); (Y.T.)
| | - Elodie Siband
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Université, Sorbonne Université, CNRS, 10 rue Vauquelin, F-75005 Paris, France; (E.S.); (D.H.)
| | - Bruno Gallas
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, 4 place Jussieu, F-75005 Paris, France;
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS, Saclay, 91191 Gif-sur-Yvette CEDEX, France;
| | - Dominique Hourdet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Université, Sorbonne Université, CNRS, 10 rue Vauquelin, F-75005 Paris, France; (E.S.); (D.H.)
| | - Yvette Tran
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Université, Sorbonne Université, CNRS, 10 rue Vauquelin, F-75005 Paris, France; (E.S.); (D.H.)
- Correspondence: (G.S.); (Y.T.)
| |
Collapse
|