1
|
Ghosh A, Kaur S, Verma G, Dolle C, Azmi R, Heissler S, Eggeler YM, Mondal K, Mager D, Gupta A, Korvink JG, Wang DY, Sharma A, Islam M. Enhanced Performance of Laser-Induced Graphene Supercapacitors via Integration with Candle-Soot Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39052020 DOI: 10.1021/acsami.4c07094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Laser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles. The composite electrode is fabricated by laser irradiation on a Kapton sheet to generate LIG material, followed by spray-coating with candle-soot nanoparticles and annealing. Materials characterization reveals that the annealing process enables a robust connection between the nanoparticles and the LIG materials and enhances nanoparticle graphitization. The prepared supercapacitor yields a maximum specific capacitance of 15.1 mF/cm2 at 0.1 mA/cm2, with a maximum energy density of 2.1 μWh/cm2 and a power density of 50 μW/cm2. Notably, the synergistic activity of candle soot and LIG surpasses the performances of previously reported LIG-based supercapacitors. Furthermore, the cyclic stability of the device demonstrates excellent capacitance retention of 80% and Coulombic efficiency of 100% over 10000 cycles.
Collapse
Affiliation(s)
- Arnab Ghosh
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
| | - Sukhman Kaur
- Mechanical Engineering Department, Punjab Engineering College, Sector 12, Chandigarh, 160012, India
| | - Gulshan Verma
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Christian Dolle
- Microscopy of Nanoscale Structures and Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Raheleh Azmi
- Institut für Angewandte Materialien, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Institut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yolita M Eggeler
- Microscopy of Nanoscale Structures and Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Kunal Mondal
- Idaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415, United States
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - De-Yi Wang
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Monsur Islam
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Dang MN, Nguyen MD, Hiep NK, Hong PN, Baek IH, Hong NT. Improved Field Emission Properties of Carbon Nanostructures by Laser Surface Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1931. [PMID: 32992586 PMCID: PMC7599498 DOI: 10.3390/nano10101931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
We herein present an alternative geometry of nanostructured carbon cathode capable of obtaining a low turn-on field, and both stable and high current densities. This cathode geometry consisted of a micro-hollow array on planar carbon nanostructures engineered by femtosecond laser. The micro-hollow geometry provides a larger edge area for achieving a lower turn-on field of 0.70 V/µm, a sustainable current of approximately 2 mA (about 112 mA/cm2) at an applied field of less than 2 V/µm. The electric field in the vicinity of the hollow array (rim edge) is enhanced due to the edge effect, that is key to improving field emission performance. The edge effect of the micro-hollow cathode is confirmed by numerical calculation. This new type of nanostructured carbon cathode geometry can be promisingly applied for high intensity and compact electron sources.
Collapse
Affiliation(s)
- Minh Nhat Dang
- The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
| | - Minh Dang Nguyen
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA;
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Nguyen Khac Hiep
- Centre for High Technology Development, VAST, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam; (N.K.H.); (P.N.H.)
| | - Phan Ngoc Hong
- Centre for High Technology Development, VAST, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam; (N.K.H.); (P.N.H.)
| | - In Hyung Baek
- Korea Atomic Energy Research Institute, Daeduk-Daero 989-111, Daejeon, Korea;
| | - Nguyen Tuan Hong
- Centre for High Technology Development, VAST, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam; (N.K.H.); (P.N.H.)
| |
Collapse
|