1
|
Channab BE, El Idrissi A, Essamlali Y, Zahouily M. Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119928. [PMID: 38219662 DOI: 10.1016/j.jenvman.2023.119928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco
| | - Younes Essamlali
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
2
|
Deng Y, Zhang Z, Cheng X, Zhou H, He L, Guan Q, Shang D, Guo M. Alkali-oxygen cooking coupled with ultrasonic etching for directly defibrillation of bagasse parenchyma cells into cellulose nanofibrils. Int J Biol Macromol 2023; 237:124121. [PMID: 36966858 DOI: 10.1016/j.ijbiomac.2023.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
A scheme combining alkali‑oxygen cooking and ultrasonic etching cleaning was developed for the short range preparation of CNF from bagasse pith, which has a soft tissue structure and is rich in parenchyma cells. This scheme expands the utilization path of sugar waste sucrose pulp. The effect of NaOH, O2, macromolecular carbohydrates, and lignin on subsequent ultrasonic etching was analyzed, and it was found that the degree of alkali‑oxygen cooking was positively correlated with the difficulty of subsequent ultrasonic etching. The mechanism of ultrasonic nano-crystallization was found to be the bidirectional etching mode from the edge and surface cracks of the cell fragments by ultrasonic microjet in the microtopography of CNF. The optimum preparation scheme was obtained under the condition of 28 % NaOH content and 0.5 MPa O2, which solves the problem of low-value utilization of bagasse pith and environmental pollution, providing a new possibility for the source of CNF.
Collapse
Affiliation(s)
- Yuan Deng
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhurun Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xinyue Cheng
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dajiang Shang
- Kunming South Water Co. LTD, Kunming, Yunnan 650501, China
| | - Man Guo
- Kunming South Water Co. LTD, Kunming, Yunnan 650501, China
| |
Collapse
|
3
|
Jiang J, Zhang X, Gao S, Li M, Hou H. Effects of adding methods and modification types of cellulose on the physicochemical properties of starch/PBAT blown films. Int J Biol Macromol 2022; 223:1335-1343. [PMID: 36395948 DOI: 10.1016/j.ijbiomac.2022.11.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
This study revealed the relationship between cellulose types/adding methods and film properties, in which sodium carboxymethyl cellulose (CMC), hydroxypropyl methyl cellulose (HPMC), and microcrystalline cellulose (MCC) were added into starch/PBAT blown films in powder, aqueous solution, and emulsion forms, respectively. Cellulose interacted with starch networks via hydrogen bonds, and those added in emulsion form made more homogeneous film morphologies. MCC emulsion enhanced the film strength (40%) and modulus (149%) to the greatest extent, while comprehensively, HPMC emulsion possessed better reinforcement effects on the films, which increased mechanical properties (31% ~ 100%), moisture barrier (20%), oxygen barrier (93%), surface hydrophobicity (20%), as well as water resistance (12% ~ 76%). Findings supported the application of cellulose in high-throughput biodegradable films, and the high-content starch/PBAT blown films reinforced by HPMC emulsion had great potential in commercial packaging fields.
Collapse
Affiliation(s)
- Junzhi Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Xiaochi Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Min Li
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
4
|
Choque-Quispe D, Choque-Quispe Y, Ligarda-Samanez CA, Peralta-Guevara DE, Solano-Reynoso AM, Ramos-Pacheco BS, Taipe-Pardo F, Martínez-Huamán EL, Aguirre Landa JP, Agreda Cerna HW, Loayza-Céspedes JC, Zamalloa-Puma MM, Álvarez-López GJ, Zamalloa-Puma A, Moscoso-Moscoso E, Quispe-Quispe Y. Effect of the Addition of Corn Husk Cellulose Nanocrystals in the Development of a Novel Edible Film. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3421. [PMID: 36234547 PMCID: PMC9565820 DOI: 10.3390/nano12193421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The cellulose from agroindustrial waste can be treated and converted into nanocrystals or nanofibers. It could be used to produce biodegradable and edible films, contributing to the circular economy and being environmentally friendly. This research aimed to develop an edible film elaborated with activated cellulose nanocrystals, native potato starch, and glycerin. The activated cellulose nanocrystals were obtained by basic/acid digestion and esterification with citric acid from corn husks. The starch was extracted from the native potato cultivated at 3500 m of altitude. Four film formulations were elaborated with potato starch (2.6 to 4.4%), cellulose nanocrystals (0.0 to 0.12%), and glycerin (3.0 to 4.2%), by thermoforming at 60 °C. It was observed that the cellulose nanocrystals reported an average size of 676.0 nm. The films mainly present hydroxyl, carbonyl, and carboxyl groups that stabilize the polymeric matrix. It was observed that the addition of cellulose nanocrystals in the films significantly increased (p-value < 0.05) water activity (0.409 to 0.447), whiteness index (96.92 to 97.27), and organic carbon content. In opposition to gelatinization temperature (156.7 to 150.1 °C), transparency (6.69 to 6.17), resistance to traction (22.29 to 14.33 N/mm), and solubility in acidic, basic, ethanol, and water media decreased. However, no significant differences were observed in the thermal decomposition of the films evaluated through TGA analysis. The addition of cellulose nanocrystals in the films gives it good mechanical and thermal resistance qualities, with low solubility, making it a potential food-coating material.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yudith Choque-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Tecnológica de los Andes, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Fredy Taipe-Pardo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Edgar L. Martínez-Huamán
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - John Peter Aguirre Landa
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Henrry W. Agreda Cerna
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Julio C. Loayza-Céspedes
- Departamento de Ingeniería Agropecuaria, Universidad Nacional de San Antonio Abad del Cusco, Andahuaylas 03701, Peru
| | | | | | - Alan Zamalloa-Puma
- Department of Physics, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Elibet Moscoso-Moscoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yadyra Quispe-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| |
Collapse
|
5
|
Zhai X, Gao S, Xiang Y, Wang A, Li Z, Cui B, Wang W. Cationized high amylose maize starch films reinforced with borax cross-linked nanocellulose. Int J Biol Macromol 2021; 193:1421-1429. [PMID: 34740689 DOI: 10.1016/j.ijbiomac.2021.10.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
In this study, a novel strategy for modifying nanocellulose (NC) by borax cross-linking was developed, and the obtained borax modified nanocellulose (BNC) was incorporated into cationized high amylose maize starch (CS) films to evaluate the applicability. Cellulose molecules were successfully cross-linked by boron ester bonds, and the original crystal type and basic chemical structure were not changed. Compared with NC, the relative crystallinity of BNC was slightly increased, and the thermal stability was obviously enhanced. Addition of NC and BNC to CS films significantly improved their tensile strength and water resistance. The dispersion of nanocellulose in CS films was effectively improved by borax cross-linking modification. CS/BNC films showed higher mechanical and water resistance properties compared with CS/NC films. Compared with pure CS film, tensile strength of the composite film with 6 wt% BNC increased about 4.0 times, and its water-vapor permeability decreased about 37%. The novel strategy for preparing BNC by using boron ester bonds will provide a potential approach for the development of starch films with desirable properties.
Collapse
Affiliation(s)
- Xiaosong Zhai
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China
| | - Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China
| | - Yamei Xiang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China
| | - Aiyue Wang
- Shandong Xingquan Oil Co. Ltd., Linyi 276600, China
| | - Zisong Li
- Shandong Xingquan Oil Co. Ltd., Linyi 276600, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wentao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China.
| |
Collapse
|
6
|
Bangar SP, Whiteside WS. Nano-cellulose reinforced starch bio composite films- A review on green composites. Int J Biol Macromol 2021; 185:849-860. [PMID: 34237362 DOI: 10.1016/j.ijbiomac.2021.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Plastic-based food packaging is generating a serious environmental problem by accumulating large amounts of plastic in the surroundings. Ecological and health concerns are driving research efforts for developing biodegradable films. There are few alternatives that could reduce the environmental impact; one of them is to substitute petroleum-based plastic with starch-based film. Starch has remarkable properties, including biodegradability, sustainability, abundancy, and capable of being modified or blended with other polymers. However, low mechanical strength and low water resistance restrict its application in food packaging. Nanocellulose isolated from lignocellulosic fibers has attracted tremendous interest in the field of science due to high crystallinity and mechanical strength, unique morphology along with abundancy, renewability, and biodegradability. Therefore, nano cellulose as a reinforcer proved to be a good option for fabricating biocomposites for food packaging. The current review will give a critical snapshot of the potential application of nanocellulose in food packaging and discuss new challenges and opportunities for starch biocomposites enriched with nano cellulose.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, USA.
| | | |
Collapse
|
7
|
Lauer MK, Smith RC. Recent advances in starch‐based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Compr Rev Food Sci Food Saf 2020; 19:3031-3083. [DOI: 10.1111/1541-4337.12627] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Moira K. Lauer
- Department of Chemistry Clemson University Clemson South Carolina USA
| | - Rhett C. Smith
- Department of Chemistry Clemson University Clemson South Carolina USA
| |
Collapse
|
8
|
Nanocellulose and Nanocarbons Based Hybrid Materials: Synthesis, Characterization and Applications. NANOMATERIALS 2020; 10:nano10091800. [PMID: 32927640 PMCID: PMC7557420 DOI: 10.3390/nano10091800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
|