1
|
Kreissl P, Holm C, Weeber R. Interplay between steric and hydrodynamic interactions for ellipsoidal magnetic nanoparticles in a polymer suspension. SOFT MATTER 2023; 19:1186-1193. [PMID: 36655681 DOI: 10.1039/d2sm01428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic nanoparticles couple to polymeric environments by several mechanisms. These include van der Waals, steric, hydrodynamic and electrostatic forces. This leads to numerous interesting effects and potential applications. Still, the details of the coupling are often unknown. In a previous work, we showed that, for spherical particles, hydrodynamic coupling alone can explain experimentally observed trends in magnetic AC susceptibility spectra [P. Kreissl, C. Holm and R. Weeber, Soft Matter, 2021, 17, 174-183]. Non-spherical, elongated particles are of interest because an enhanced coupling to the surrounding polymers is expected. In this publication we study the interplay of steric and hydrodynamic interactions between those particles and a polymer suspension. To this end, we obtain rotational friction coefficients, relaxation times for the magnetic moment, and AC susceptibility spectra, and compare these for simulations with and without hydrodynamic interactions considered. We show that, even if the particle is ellipsoidal, its hydrodynamic interactions with the surrounding polymers are much stronger than the steric ones due to the shape-anisotropy of the particle.
Collapse
Affiliation(s)
- Patrick Kreissl
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Rudolf Weeber
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| |
Collapse
|
2
|
Demessie AA, Park Y, Singh P, Moses AS, Korzun T, Sabei FY, Albarqi HA, Campos L, Wyatt CR, Farsad K, Dhagat P, Sun C, Taratula OR, Taratula O. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia. SMALL METHODS 2022; 6:e2200916. [PMID: 36319445 PMCID: PMC9772135 DOI: 10.1002/smtd.202200916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Fahad Y Sabei
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 88723, Kingdom of Saudi Arabia
| | - Hassan A Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 55461, Kingdom of Saudi Arabia
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR, 97239, USA
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, 97239, USA
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pallavi Dhagat
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| |
Collapse
|
3
|
Mohammadi F, Gholami A, Omidifar N, Amini A, Kianpour S, Taghizadeh SM. The potential of surface nano-engineering in characteristics of cobalt-based nanoparticles and biointerface interaction with prokaryotic and human cells. Colloids Surf B Biointerfaces 2022; 215:112485. [PMID: 35367746 DOI: 10.1016/j.colsurfb.2022.112485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023]
Abstract
Cobalt-based nanoparticles (CBNPs) have recently received great attention in biomedical studies; however, the possible biotoxicity of these nanoparticles (NPs) has remained a foremost concern that should be addressed. As surface functionalization is one of the helpful proposed solutions, we aimed to apply Lipoamino acids (LAAs) as a coating agent to improve biocompatibility. To this purpose, cobalt oxide, cobalt ferrite, and iron oxide nanoparticles (IONs) were synthesized with and without 2-amino-hexadecanoic acid coating to assess the impacts of LAA coating on characteristics and biocompatibility of CBNPs in human cells and compare with IONs, a widely used magnetic NPs in biomedicine. Antibacterial activities of NPs were evaluated against four Gram-negative and Gram-positive bacteria species to assess their biointerface interaction with prokaryotic cells. In addition, the antibacterial activities of synthesized NPs were compared to silver NPs, one of the widely used antimicrobial NPs and standard antibiotics (ampicillin). The structural characteristics properties of NPs were analyzed using TEM, FE-SEM, EDS, FTIR, XRD, and VSM. These NPs exhibited sphere-like to polygon-like morphology with desirable mean size. CBNPs displayed dose-dependent cytotoxicity and antimicrobial activities against human cell lines and all tested microbial species, as well as more cytotoxicity and bacterial inhibition compared to IONs. Besides, the results revealed that LAA coating could significantly improve the biocompatibility and antibacterial activity of NPs while impacting magnetic properties. To sum up, it seems that surface functionalization could provide more potent tools for bioapplications with improving biocompatibility and bacterial inhibition of CBNPs, though; further studies are needed in this regard.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Amini
- Centre for Infrastructure Engineering, Western Sydney University, Penrith 2751, NSW, Australia; Department of Mechanical Engineering, Australian University-Kuwait, Mishref, Safat 13015, Kuwait
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
4
|
Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9122264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The combination of plasmonic material and magnetic metal oxide nanoparticles is widely used in multifunctional nanosystems. Here we propose a method for the fabrication of a gold/cobalt ferrite nanocomposite for biomedical applications. The composite includes gold cores of ~10 nm in diameter coated with arginine, which are surrounded by small cobalt ferrite nanoparticles with diameters of ~5 nm covered with dihydrocaffeic acid. The structure and elemental composition, morphology and dimensions, magnetic and optical properties, and biocompatibility of new nanocomposite were studied. The magnetic properties of the composite are mostly determined by the superparamagnetic state of cobalt ferrite nanoparticles, and optical properties are influenced by the localized plasmon resonance in gold nanoparticles. The cytotoxicity of gold/cobalt ferrite nanocomposite was tested using T-lymphoblastic leukemia and peripheral blood mononuclear cells. Studied composite has selective citotoxic effect on cancerous cells while it has no cytotoxic effect on healtly cells. The results suggest that this material can be explored in the future for combined photothermal treatment and magnetic theranostic.
Collapse
|
5
|
Friedrich RP, Janko C, Unterweger H, Lyer S, Alexiou C. SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the past decades, a wide variety of different superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized. Due to their unique properties, such as big surface-to-volume ratio, superparamagnetism and comparatively low toxicity, they are principally well suited for many different technical and biomedical applications. Meanwhile, there are a numerous synthesis methods for SPIONs, but high requirements for biocompatibility have so far delayed a successful translation into the clinic. Moreover, depending on the planned application, such as for imaging, magnetic drug targeting, hyperthermia or for hybrid materials intended for regenerative medicine, specific physicochemical and biological properties are inevitable. Since a summary of all existing SPION systems, their properties and application is far too extensive, this review reports on selected methods for SPION synthesis, their biocompatibility and biomedical applications.
Collapse
Affiliation(s)
- Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| |
Collapse
|
6
|
Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, we present a theoretical study on the maximum specific loss power in the admissible biological limit (PsM)l for CoFe2O4 ferrimagnetic nanoparticles, as a possible candidate in alternative and non-invasive cancer therapy by superparamagnetic hyperthermia. The heating time of the nanoparticles (Δto) at the optimum temperature of approx. 43 °C for the efficient destruction of tumor cells in a short period of time, was also studied. We found the maximum specific loss power PsM (as a result of superparamegnetic relaxation in CoFe2O4 nanoparticles) for very small diameters of the nanoparticles (Do), situated in the range of 5.88–6.67 nm, and with the limit frequencies (fl) in the very wide range of values of 83–1000 kHz, respectively. Additionally, the optimal heating temperature (To) of 43 °C was obtained for a very wide range of values of the magnetic field H, of 5–60 kA/m, and the corresponding optimal heating times (Δto) were found in very short time intervals in the range of ~0.3–44 s, depending on the volume packing fraction (ε) of the nanoparticles. The obtained results, as well as the very wide range of values for the amplitude H and the frequency f of the external alternating magnetic field for which superparamagnetic hyperthermia can be obtained, which are great practical benefits in the case of hyperthermia, demonstrate that CoFe2O4 nanoparticles can be successfully used in the therapy of cancer by superaparamagnetic hyperthermia. In addition, the very small size of magnetic nanoparticles (only a few nm) will lead to two major benefits in cancer therapy via superparamagnetic hyperthermia, namely: (i) the possibility of intracellular therapy which is much more effective due to the ability to destroy tumor cells from within and (ii) the reduced cell toxicity.
Collapse
|
7
|
Lucht N, Hinrichs S, Großmann L, Pelz C, Felgenhauer E, Clasen E, Schwenk M, Hankiewicz B. Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Multi responsive hydrogels have many potential applications in the field of medicine as well as technical fields and are of great interest in fundamental research. Here we present the synthesis and characterization of tailored magnetic hydrogels – micro- as well as macrogels – which consist of iron oxide and cobalt ferrite, varying in phase and morphology, embedded in a thermoresponsive polymer. We introduce new ways to synthesize magnetic particles and revisit some common strategies when dealing with particle synthesis. Subsequently we discuss the details of the thermoresponsive matrix and how we can influence and manipulate the thermoresponsive properties, i.e. the lower critical solution temperature. Ultimately, we present the particle-hydrogel composite and show two exemplary applications for particle matrix interactions, i.e. heat transfer and reorientation of the particles in a magnetic field.
Collapse
Affiliation(s)
- Niklas Lucht
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Stephan Hinrichs
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Larissa Großmann
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Catharina Pelz
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Elena Felgenhauer
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Eike Clasen
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Max Schwenk
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| |
Collapse
|
8
|
Abstract
Abstract
Magnetic particle imaging (MPI) is a young imaging modality for biomedical applications. It uses magnetic nanoparticles as a tracer material to produce three-dimensional images of the spatial tracer distribution in the field-of-view. Since the tracer magnetization dynamics are tied to the hydrodynamic mobility via the Brownian relaxation mechanism, MPI is also capable of mapping the local environment during the imaging process. Since the influence of viscosity or temperature on the harmonic spectrum is very complicated, we used magnetic particle spectroscopy (MPS) as an integral measurement technique to investigate the relationships. We studied MPS spectra as function of both viscosity and temperature on model particle systems. With multispectral MPS, we also developed an empirical tool for treating more complex scenarios via a calibration approach. We demonstrate that MPS/MPI are powerful methods for studying particle-matrix interactions in complex media.
Collapse
|
9
|
Pack CG, Paulson B, Shin Y, Jung MK, Kim JS, Kim JK. Variably Sized and Multi-Colored Silica-Nanoparticles Characterized by Fluorescence Correlation Methods for Cellular Dynamics. MATERIALS 2020; 14:ma14010019. [PMID: 33374548 PMCID: PMC7793086 DOI: 10.3390/ma14010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Controlling the uptake of nanoparticles into cells so as to balance therapeutic effects with toxicity is an essential unsolved problem in the development of nanomedicine technologies. From this point of view, it is useful to use standard nanoparticles to quantitatively evaluate the physical properties of the nanoparticles in solution and in cells, and to analyze the intracellular dynamic motion and distribution of these nanoparticles at a single-particle level. In this study, standard nanoparticles are developed based on a variant silica-based nanoparticle incorporating fluorescein isothiocyanate (FITC) or/and rhodamine B isothiocyanate (RITC) with a variety of accessible diameters and a matching fluorescent cobalt ferrite core-shell structure (Fe2O4/SiO2). The physical and optical properties of the nanoparticles in vitro are fully evaluated with the complementary methods of dynamic light scattering, electron microscopy, and two fluorescence correlation methods. In addition, cell uptake of dual-colored and core/shell nanoparticles via endocytosis in live HeLa cells is detected by fluorescence correlation spectroscopy and electron microscopy, indicating the suitability of the nanoparticles as standards for further studies of intracellular dynamics with multi-modal methods.
Collapse
Affiliation(s)
- Chan-Gi Pack
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea; (C.-G.P.); (B.P.)
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Bjorn Paulson
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea; (C.-G.P.); (B.P.)
| | - Yeonhee Shin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Min Kyo Jung
- Neural Circuits Group, Korea Brain Research Institute, Daegu 41062, Korea;
| | - Jun Sung Kim
- Research and Development Center, H-MED Incorporated, Seoul 03761, Korea
- Correspondence: (J.S.K.); (J.K.K.); Tel.: +82-2-3010-8619 (J.K.K.)
| | - Jun Ki Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea; (C.-G.P.); (B.P.)
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (J.S.K.); (J.K.K.); Tel.: +82-2-3010-8619 (J.K.K.)
| |
Collapse
|
10
|
Dutz S, Buske N, Landers J, Gräfe C, Wende H, Clement JH. Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1019. [PMID: 32471031 PMCID: PMC7352500 DOI: 10.3390/nano10061019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/03/2023]
Abstract
Magnetite (Fe3O4) particles with a diameter around 10 nm have a very low coercivity (Hc) and relative remnant magnetization (Mr/Ms), which is unfavorable for magnetic fluid hyperthermia. In contrast, cobalt ferrite (CoFe2O4) particles of the same size have a very high Hc and Mr/Ms, which is magnetically too hard to obtain suitable specific heating power (SHP) in hyperthermia. For the optimization of the magnetic properties, the Fe2+ ions of magnetite were substituted by Co2+ step by step, which results in a Co doped iron oxide inverse spinel with an adjustable Fe2+ substitution degree in the full range of pure iron oxide up to pure cobalt ferrite. The obtained magnetic nanoparticles were characterized regarding their structural and magnetic properties as well as their cell toxicity. The pure iron oxide particles showed an average size of 8 nm, which increased up to 12 nm for the cobalt ferrite. For ferrofluids containing the prepared particles, only a limited dependence of Hc and Mr/Ms on the Co content in the particles was found, which confirms a stable dispersion of the particles within the ferrofluid. For dry particles, a strong correlation between the Co content and the resulting Hc and Mr/Ms was detected. For small substitution degrees, only a slight increase in Hc was found for the increasing Co content, whereas for a substitution of more than 10% of the Fe atoms by Co, a strong linear increase in Hc and Mr/Ms was obtained. Mössbauer spectroscopy revealed predominantly Fe3+ in all samples, while also verifying an ordered magnetic structure with a low to moderate surface spin canting. Relative spectral areas of Mössbauer subspectra indicated a mainly random distribution of Co2+ ions rather than the more pronounced octahedral site-preference of bulk CoFe2O4. Cell vitality studies confirmed no increased toxicity of the Co-doped iron oxide nanoparticles compared to the pure iron oxide ones. Magnetic heating performance was confirmed to be a function of coercivity as well. The here presented non-toxic magnetic nanoparticle system enables the tuning of the magnetic properties of the particles without a remarkable change in particles size. The found heating performance is suitable for magnetic hyperthermia application.
Collapse
Affiliation(s)
- Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, D-98693 Ilmenau, Germany
- Department of Nano Biophotonics, Leibniz Institute of Photonic Technology (IPHT), D-07745 Jena, Germany
| | - Norbert Buske
- MagneticFluids, Köpenicker Landstraße 203, D-12437 Berlin, Germany;
| | - Joachim Landers
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany; (J.L.); (H.W.)
| | - Christine Gräfe
- Department Hematology and Oncology, Jena University Hospital, D-07747 Jena, Germany; (C.G.); (J.H.C.)
| | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany; (J.L.); (H.W.)
| | - Joachim H. Clement
- Department Hematology and Oncology, Jena University Hospital, D-07747 Jena, Germany; (C.G.); (J.H.C.)
| |
Collapse
|