1
|
Senila L, Botiz I, Roman C, Simedru D, Dan M, Kacso I, Senila M, Todor-Boer O. Processing of Thin Films Based on Cellulose Nanocrystals and Biodegradable Polymers by Space-Confined Solvent Vapor Annealing and Morphological Characteristics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1685. [PMID: 38612198 PMCID: PMC11012654 DOI: 10.3390/ma17071685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
L-poly(lactic acid), poly(3-hydroxybutyrate), and poly-hydroxybutyrate-co-hydroxyvalerate are biodegradable polymers that can be obtained from renewable biomass sources. The aim of this study was to develop three types of environmentally friendly film biocomposites of altered microstructure by combining each of the above-mentioned polymers with cellulose nanocrystal fillers and further processing the resulting materials via space-confined solvent vapor annealing. Cellulose was previously obtained from renewable biomass and further converted to cellulose nanocrystals by hydrolysis with the lactic acid. The solutions of biodegradable polymers were spin-coated onto solid substrates before and after the addition of cellulose nanocrystals. The obtained thin film composites were further processed via space-confined solvent vapor annealing to eventually favor their crystallization and, thus, to alter the final microstructure. Indeed, atomic force microscopy studies have revealed that the presence of cellulose nanocrystals within a biodegradable polymer matrix promoted the formation of large crystalline structures exhibiting fractal-, spherulitic- or needle-like morphologies.
Collapse
Affiliation(s)
- Lacrimioara Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania;
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Cecilia Roman
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Dorina Simedru
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (M.D.); (I.K.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (M.D.); (I.K.)
| | - Marin Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Otto Todor-Boer
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| |
Collapse
|
2
|
Babutan I, Todor-Boer O, Atanase LI, Vulpoi A, Botiz I. Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers (Basel) 2023; 15:polym15081900. [PMID: 37112047 PMCID: PMC10145245 DOI: 10.3390/polym15081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In this study we have employed a polymer processing method based on solvent vapor annealing in order to condense relatively large amounts of solvent vapors onto thin films of block copolymers and thus to promote their self-assembly into ordered nanostructures. As revealed by the atomic force microscopy, a periodic lamellar morphology of poly(2-vinylpyridine)-b-polybutadiene and an ordered morphology comprised of hexagonally-packed structures made of poly(2-vinylpyridine)-b-poly(cyclohexyl methacrylate) were both successfully generated on solid substrates for the first time.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Otto Todor-Boer
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Adriana Vulpoi
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Pluronic stabilized conjugated polymer nanoparticles for NIR fluorescence imaging and dual phototherapy applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Botiz I, Durbin MM, Stingelin N. Providing a Window into the Phase Behavior of Semiconducting Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian nr. 42, Cluj-Napoca 400271, Romania
| | - Marlow M. Durbin
- School of Chemical and Biochemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Natalie Stingelin
- School of Chemical and Biochemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
5
|
Babutan I, Lucaci AD, Botiz I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers (Basel) 2021; 13:1552. [PMID: 34066135 PMCID: PMC8150949 DOI: 10.3390/polym13101552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microbes are the main cause of various undesired infections in living organisms, including humans. Most of these infections are favored in hospital environments where humans are being treated with antibiotics and where some microbes succeed in developing resistance to such drugs. As a consequence, our society is currently researching for alternative, yet more efficient antimicrobial solutions. Certain natural and synthetic polymers are versatile materials that have already proved themselves to be highly suitable for the development of the next-generation of antimicrobial systems that can efficiently prevent and kill microbes in various environments. Here, we discuss the latest developments of polymeric structures, exhibiting (reinforced) antimicrobial attributes that can be assembled on surfaces and coatings either from synthetic polymers displaying antiadhesive and/or antimicrobial properties or from blends and nanocomposites based on such polymers.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
| | - Alexandra-Delia Lucaci
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 38 Gheorghe Marinescu Str., 540142 Târgu Mureș, Romania;
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Levitsky A, Schneider SA, Rabkin E, Toney MF, Frey GL. Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. MATERIALS HORIZONS 2021; 8:1272-1285. [PMID: 34821920 DOI: 10.1039/d0mh01805h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The performance of organic solar cells (OSC) critically depends on the morphology of the active layer. After deposition, the active layer is in a metastable state and prone to changes that lead to cell degradation. Here, a high efficiency fullerene:polymer blend is used as a model system to follow the temperature-induced morphology evolution through a series of thermal annealing treatments. Electron microscopy analysis of the nano-scale phase evolution during the early stages of thermal annealing revealed that spinodal decomposition, i.e. spontaneous phase separation with no nucleation stage, is possibly responsible for the formation of a fine scale bicontinuous structure. In the later evolution stages, large polycrystalline fullerene aggregates are formed. Optical microscopy and scattering revealed that aggregate-growth follows the Johnson-Mehl-Avrami-Kolmogorov equation indicating a heterogeneous transformation process, i.e., through nucleation and growth. These two mechanisms, spinodal decomposition vs. nucleation and growth, are mutually exclusive and their co-existence is surprising. This unexpected observation is resolved by introducing a metastable monotectic phase diagram and showing that the morphology evolution goes through two distinct and consecutive transformation processes where spinodal decomposition of the amorphous donor:acceptor blend is followed by nucleation and growth of crystalline acceptor aggregates. Finally, this unified thermodynamic and kinetic mechanism allows us to correlate the morphology evolution with OSC degradation during thermal annealing.
Collapse
Affiliation(s)
- Artem Levitsky
- Department of Material Science and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|