1
|
Yu S, Zhang H, Zhou Y, Li C. Enhanced electrocatalytic degradation of tetracycline by ZIF-67@CNT coupled with a self-standing aligned carbon nanofiber anodic membrane. NANOTECHNOLOGY 2024; 35:145701. [PMID: 38134436 DOI: 10.1088/1361-6528/ad183c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Due to the misuse and overuse of the antibiotic tetracycline (TC), as well as its refractory degradability, it has become a stubborn environmental contaminant. In this study, a self-standing polyacrylonitrile-based ZIF-67@CNT/ACF aligned anodic membrane was fabricated by innovatively incorporating ZIF-67@CNT nanoparticles into an aligned carbon nanofiber (ACF) membrane to treat the TC. The flow-through nanoporous construction of the ZIF-67@CNT/ACF membrane reactor can compress the diffusion boundary layer on the electrode surface to enhance mass transfer under microscopic laminar flow, which can further enhance the degradation rate. In addition, the enhanced degradation performance also benefited from the significant electrooxidation capacity of the ZIF-67@CNT/ACF membrane. At the optimal electrocatalytic condition of 3.0 V applied potential and pH 6, the degradation rate reached 81% in 1 h for an initial TC concentration of 10 mg l-1. The refractory and highly toxic TC was electrochemically degraded into small non-toxic molecules. Our results indicate that electrocatalytic TC degradation can be enhanced by ZIF-67@CNT/ACF membrane.
Collapse
Affiliation(s)
- Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| | - Huiying Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| |
Collapse
|
2
|
Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrospun nanofibers have become the most promising building blocks for future high-performance electronic devices because of the advantages of larger specific surface area, higher porosity, more flexibility, and stronger mechanical strength over conventional film-based materials. Moreover, along with the properties of ease of fabrication and cost-effectiveness, a broad range of applications based on nanomaterials by electrospinning have sprung up. In this review, we aim to summarize basic principles, influence factors, and advanced methods of electrospinning to produce hundreds of nanofibers with different structures and arrangements. In addition, electrospun nanofiber based electronics composed of both two-terminal and three-terminal devices and their practical applications are discussed in the fields of sensing, storage, and computing, which give rise to the further integration to realize a comprehensive and brain-like system. Last but not least, the emulation of biological synapses through artificial synaptic transistors and additionally optoelectronics in recent years are included as an important step toward the construction of large-scale, multifunctional systems.
Collapse
|
3
|
Hartati S, Zulfi A, Maulida PY, Yudhowijoyo A, Dioktyanto M, Saputro KE, Noviyanto A, Rochman NT. Synthesis of Electrospun PAN/TiO 2/Ag Nanofibers Membrane As Potential Air Filtration Media with Photocatalytic Activity. ACS OMEGA 2022; 7:10516-10525. [PMID: 35382322 PMCID: PMC8973152 DOI: 10.1021/acsomega.2c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/07/2022] [Indexed: 05/07/2023]
Abstract
The PAN/TiO2/Ag nanofibers membrane for air filtration media was successfully synthesized with electrospinning method. The morphology, size, and element percentage of the nanofiber were characterized by a scanning electron microscopy-energy dispersive spectroscopy, while X-ray fluorescence and FTIR were used to observe the chemical composition. The water contact angle and UV-vis absorption were measured for physical properties. Performance for air filtration media was measured by pressure drop, efficiency, and quality factor test. TiO2 and Ag have been successfully deposited in nonuniform 570 nm PAN/TiO2/Ag nanofibers. The nanofiber membrane had hydrophilic surface after TiO2 and Ag addition with a water contact angle of 34.58°. UV-vis data showed the shifting of absorbance and band gap energy of nanofibers membrane to visible light from 3.8 to 1.8 eV. The 60 min spun PAN/TiO2/Ag nanofibers membrane had a 96.9% efficiency of PM2.5, comparable to results reported in previous studies. These properties were suitable to be applied on air filtration media with photocatalytic activity for self-cleaning performance.
Collapse
Affiliation(s)
- Sri Hartati
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Akmal Zulfi
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
- National
Research and Innovation Agency, Gedung B.J. Habibie Jalan M.H. Thamrin No. 8, Central Jakarta City 10340, Indonesia
| | | | - Azis Yudhowijoyo
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Mudzakkir Dioktyanto
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Kurniawan Eko Saputro
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Alfian Noviyanto
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
- Department
of Mechanical Engineering, Mercu Buana University, Jl. Meruya Selatan, Kebun Jeruk, Jakarta 11650, Indonesia
| | - Nurul Taufiqu Rochman
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
- Research
Center for Metallurgy and Materials, National Research and Innovation
Agency, PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| |
Collapse
|
4
|
Pardo-Figuerez M, Chiva-Flor A, Figueroa-Lopez K, Prieto C, Lagaron JM. Antimicrobial Nanofiber Based Filters for High Filtration Efficiency Respirators. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:900. [PMID: 33915897 PMCID: PMC8067087 DOI: 10.3390/nano11040900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
Electrospinning has been used to develop and upscale polyacrylonitrile (PAN) nanofibers as effective aerosol filtration materials for their potential use in respirators. The fibers were deposited onto non-woven spunbond polypropylene (SPP) and the basis weight (grammage, g/m2) was varied to assess the resulting effect on filtration efficiency and breathing resistance of the materials. The results indicated that a basis weight in excess of 0.4 g/m2 of PAN electrospun fibers yielded a filtration efficiency over 97%, with breathing resistance values that increased proportionally with the amount of basis weight added. With the aim of retaining filter efficiency whilst lowering breathing resistance, the basis weight of 0.4 g/m2 and 0.8 g/m2 of PAN electrospun fibers were strategically split up and stacked with SPP in different configurations. The results suggested that a symmetric structure based on SPP/PAN/PAN/SPP was the optimal structure, as it reduces SPP consumption while maintaining an FFP2-type of filtration efficiency, while reducing breathing resistance, specially at high air flow rates, such as those mimicking FFP2 exhalation conditions. The incorporation of zinc oxide (ZnO) nanoparticles within the electrospun nanofibers in the form of nanocomposites, retained the high filtration characteristics of the unfilled filter, while exhibiting a strong bactericidal capacity, even after short contact times. This study demonstrates the potential of using the symmetric splitting of the PAN nanofibers layer as a somewhat more efficient configuration in the design of filters for respirators.
Collapse
Affiliation(s)
- Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
- Bioinicia S.L., R & D Department, Calle Algepser, 65 Nave 3, 46980 Paterna, Spain;
| | - Alberto Chiva-Flor
- Bioinicia S.L., R & D Department, Calle Algepser, 65 Nave 3, 46980 Paterna, Spain;
| | - Kelly Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
| |
Collapse
|
5
|
Magaz A, Spencer BF, Hardy JG, Li X, Gough JE, Blaker JJ. Modulation of Neuronal Cell Affinity on PEDOT-PSS Nonwoven Silk Scaffolds for Neural Tissue Engineering. ACS Biomater Sci Eng 2020; 6:6906-6916. [PMID: 33320623 DOI: 10.1021/acsbiomaterials.0c01239] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral nerve injury is a common consequence of trauma with low regenerative potential. Electroconductive scaffolds can provide appropriate cell growth microenvironments and synergistic cell guidance cues for nerve tissue engineering. In the present study, electrically conductive scaffolds were prepared by conjugating poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) or dimethyl sulfoxide (DMSO)-treated PEDOT-PSS on electrospun silk scaffolds. Conductance could be tuned by the coating concentration and was further boosted by DMSO treatment. Analogue NG108-15 neuronal cells were cultured on the scaffolds to evaluate neuronal cell growth, proliferation, and differentiation. Cellular viability was maintained on all scaffold groups while showing comparatively better metabolic activity and proliferation than neat silk. DMSO-treated PEDOT-PSS functionalized scaffolds partially outperformed their PEDOT-PSS counterparts. Differentiation assessments suggested that these PEDOT-PSS assembled silk scaffolds could support neurite sprouting, indicating that they show promise to be used as a future platform to restore electrochemical coupling at the site of injury and preserve normal nerve function.
Collapse
Affiliation(s)
- Adrián Magaz
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom.,Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634 Singapore
| | - Ben F Spencer
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634 Singapore.,Department of Chemistry, National University of Singapore, Singapore 117543 Singapore
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jonny J Blaker
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom.,Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
6
|
Wang Y, Song Y, Ye C, Xu L. Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1280-1290. [PMID: 32953372 PMCID: PMC7476595 DOI: 10.3762/bjnano.11.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Ordered carbon/graphene composite nanofibers (CGCNFs) with different porous configurations were used as a material to fabricate supercapacitor electrodes. These nanofibers were synthesized by applying a modified parallel electrode to the electrospinning method (MPEM) in order to generate electrospun polyacrylonitrile (PAN) nanofibers containing graphene. After synthesis, these fibers were submitted to carbonization under a N2 atmosphere at 1100 °C. The influence of the ordering and porosity of CGCNFs on their electrochemical performance was studied. The results showed that by adding deionized water to the spinning solution one could increase the number of mesopores and the specific surface area of CGCNFs, thereby significantly increasing their specific capacitance. In addition, the ordering of CGCNFs within the electrode improved the electron transfer efficiency, resulting in a higher specific capacitance.
Collapse
Affiliation(s)
- Yi Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Yanhua Song
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Chengwei Ye
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| |
Collapse
|