1
|
Marchegiani F, Recchioni R, Di Rosa M, Piacenza F, Marcheselli F, Bonfigli AR, Galeazzi R, Matacchione G, Cardelli M, Procopio AD, Corsonello A, Cherubini A, Antonicelli R, Lombardi G, Lattanzio F, Olivieri F. Low circulating levels of miR-17 and miR-126-3p are associated with increased mortality risk in geriatric hospitalized patients affected by cardiovascular multimorbidity. GeroScience 2024; 46:2531-2544. [PMID: 38008859 PMCID: PMC10828307 DOI: 10.1007/s11357-023-01010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023] Open
Abstract
MultiMorbidity (MM), defined as the co-occurrence of two or more chronic conditions, is associated with poorer health outcomes, such as recurrent hospital readmission and mortality. As a group of conditions, cardiovascular disease (CVD) exemplifies several challenges of MM, and the identification of prognostic minimally invasive biomarkers to stratify mortality risk in patients affected by cardiovascular MM is a huge challenge. Circulating miRNAs associated to inflammaging and endothelial dysfunction, such as miR-17, miR-21-5p, and miR-126-3p, are expected to have prognostic relevance. We analyzed a composite profile of circulating biomarkers, including miR-17, miR-21-5p, and miR-126-3p, and routine laboratory biomarkers in a sample of 246 hospitalized geriatric patients selected for cardiovascular MM from the Report-AGE INRCA database and BioGER INRCA biobank, to evaluate the association with all-cause mortality during 31 days and 12 and 24 months follow-up. Circulating levels of miR-17, miR-126-3p, and some blood parameters, including neutrophil to lymphocyte ratio (NLR) and eGFR, were significantly associated with mortality in these patients. Overall, our results suggest that in a cohort of geriatric hospitalized patients affected by cardiovascular MM, lower circulating miR-17 and miR-126-3p levels could contribute to identify patients at higher risk of short- and medium-term mortality.
Collapse
Affiliation(s)
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121, Ancona, Italy
| | - Mirko Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, 60124, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | | | | | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121, Ancona, Italy
| | | | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121, Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Andrea Corsonello
- Unit of Geriatric Medicine, IRCCS INRCA, 87100, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro Di Ricerca Per L'invecchiamento, IRCCS INRCA, 60127, Ancona, Italy
| | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | | | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121, Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, 60126, Ancona, Italy
| |
Collapse
|
2
|
Systems Biology in Chronic Heart Failure-Identification of Potential miRNA Regulators. Int J Mol Sci 2022; 23:ijms232315226. [PMID: 36499552 PMCID: PMC9740605 DOI: 10.3390/ijms232315226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR. In silico analysis of predicted targets by STRING protein-protein interaction networks revealed eight cluster networks (involving seven of the identified miRNAs) enriched in pathways related to cell cycle, Ras, chemokine, PI3K-AKT and TGF-β signaling. By ROC curve analysis, combined probabilities of these seven miRNAs (let-7a-5p, miR-107, miR-125a-5p, miR-139-5p, miR-150-5p, miR-30b-5p and miR-342-3p; clusters 1-4 [C:1-4]), discriminated between HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), and ischaemic and non-ischaemic aetiology. A combination of miR-107, miR-139-5p and miR-150-5p, involved in clusters 5 and 7 (C:5+7), discriminated HFpEF from HFrEF. Pathway enrichment analysis of miRNAs present in C:1-4 (let-7a-5p, miR-125a-5p, miR-30b-5p and miR-342-3p) revealed pathways related to HF pathogenesis. In conclusion, we have identified a differential signature of down-regulated miRNAs in the plasma of HF patients and propose novel cellular mechanisms involved in cHF pathogenesis.
Collapse
|
3
|
Upregulation of miR-335-5p Contributes to Right Ventricular Remodeling via Calumenin in Pulmonary Arterial Hypertension. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9294148. [PMID: 36246958 PMCID: PMC9557250 DOI: 10.1155/2022/9294148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Right ventricular (RV) failure determines the prognosis in pulmonary arterial hypertension (PAH), but the underlying mechanism is still unclear. Growing evidence has shown that microRNAs participate in RV remodeling. This study is undertaken to explore the role of miR-335-5p in regulating RV remodeling induced by PAH. Two PAH models were used in the study, including the monocrotaline rat model and hypoxia/su5416 mouse model. miRNA sequencing and RT-qPCR validation identified that miR-335-5p was elevated in the RV of PAH rats. In vitro, miR-335-5p expression was increased after angiotensin II treatment, and miR-335-5p inhibition relieved angiotensin II-induced cardiomyocyte hypertrophy. The luciferase reporter assay showed that calumenin was a target gene for miR-335-5p. Pretreatment with miR-335-5p inhibitors could rescue calumenin downregulation induced by angiotensin II in H9C2 cells. Moreover, intracellular Ca2+ concentration and apoptosis were increased after angiotensin II treatment, and miR-335-5p inhibition decreased intracellular Ca2+ accumulation and apoptosis. Finally, in vivo miR-335-5p downregulation (antagomir miR-335-5p) attenuated RV remodeling and rescued calumenin downregulation under conditions of hypoxia/su5416 exposure. Our work highlights the role of miR-335-5p and calumenin in RV remodeling and may lead to the development of novel therapeutic strategies for right heart failure.
Collapse
|
4
|
Rincón LM, Rodríguez-Serrano M, Conde E, Lanza VF, Sanmartín M, González-Portilla P, Paz-García M, Del Rey JM, Menacho M, García Bermejo ML, Zamorano JL. Serum microRNAs are key predictors of long-term heart failure and cardiovascular death after myocardial infarction. ESC Heart Fail 2022; 9:3367-3379. [PMID: 35837763 DOI: 10.1002/ehf2.13919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/09/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients with acute myocardial infarction (MI) are at high risk of upcoming events, in particular heart failure (HF), but reliable stratification methods are lacking. Our goal was to evaluate the potential role of circulating miRNAs as prognostic biomarkers in patients presenting with MI. METHODS AND RESULTS We conducted a prospective study among 311 consecutive patients hospitalized with MI (65% ST-segment elevation MI & median age of 55 years) with long-term follow-up. An initial screening was conducted to select candidate miRNAs, with subsequent study of 14 candidate miRNAs. The primary outcome was the composite of hospital admission for HF or cardiovascular death. During a mean follow-up of 2.1 years miR-21-5p, miR-23a-3p, miR27b-3p, miR-122-5p, miR210-3p, and miR-221-3p reliably predicted the primary outcome. Multivariate Cox regression analyses highlighted that miR-210-3p [hazard ratio (HR) 2.65 per 1 SD increase, P < 0.001], miR-23a-3p (HR 2.11 per 1 SD increase, P < 0.001), and miR-221-3p (HR 2.03 per 1 SD increase, P < 0.001) were able to accurately predict the primary outcome, as well as cardiovascular death, HF hospitalizations, and long-term New York Heart Association (NYHA) functional class. These three miRNAs clearly improved the performance of multivariate clinical models: ΔC-statistic = 0.10 [95% confidence interval (CI), 0.03-0.17], continuous net reclassification index = 34.8% (95%CI, 5.8-57.4%), and integrated discrimination improvement (P < 0.001). CONCLUSIONS This is the largest study evaluating the prognostic value of circulating miRNAs for HF-related events among patients with MI. We show that several miRNAs predict HF hospitalizations, cardiovascular mortality, and poor long-term NYHA status and improve current risk prediction methods.
Collapse
Affiliation(s)
- Luis M Rincón
- Department of Cardiology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28034, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Macarena Rodríguez-Serrano
- Biomarkers and Therapeutic Targets Laboratory and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spanish Renal Research Network (REDinREN), Ctra. Colmenar Km 9100, Madrid, 28034, Spain
| | - Elisa Conde
- Biomarkers and Therapeutic Targets Laboratory and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spanish Renal Research Network (REDinREN), Ctra. Colmenar Km 9100, Madrid, 28034, Spain
| | - Val F Lanza
- Bioinformatics Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marcelo Sanmartín
- Department of Cardiology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28034, Spain
| | - Paz González-Portilla
- Department of Cardiology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28034, Spain
| | - Marta Paz-García
- Biomarkers and Therapeutic Targets Laboratory and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spanish Renal Research Network (REDinREN), Ctra. Colmenar Km 9100, Madrid, 28034, Spain
| | - José Manuel Del Rey
- Department of Biochemistry, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Miriam Menacho
- Department of Biochemistry, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María-Laura García Bermejo
- Biomarkers and Therapeutic Targets Laboratory and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spanish Renal Research Network (REDinREN), Ctra. Colmenar Km 9100, Madrid, 28034, Spain
| | - José L Zamorano
- Department of Cardiology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28034, Spain
- Hospital La Zarzuela, Madrid, Spain
| |
Collapse
|
5
|
Matveeva NA, Baulina NM, Kiselev IS, Titov BV, Favorova OO. MiRNA miR-375 as a Multifunctional Regulator of the Cardiovascular System. Mol Biol 2022. [DOI: 10.1134/s0026893322020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gao F, Wang X, Fan T, Luo Z, Ma M, Hu G, Li Y, Liang Y, Lin X, Xu B. LncRNA LINC00461 exacerbates myocardial ischemia-reperfusion injury via microRNA-185-3p/Myd88. Mol Med 2022; 28:33. [PMID: 35272621 PMCID: PMC8908691 DOI: 10.1186/s10020-022-00452-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) play critically in the pathogenesis of myocardial ischemia-reperfusion (I/R) injury. Thus, it was proposed to investigate the mechanism of LINC00461 in the disease through mediating microRNA-185-3p (miR-185-3p)/myeloid differentiation primary response gene 88 (Myd88) axis. METHODS miR-185-3p, LINC00461 and Myd88 expression in mice with I/R injury was measured. Mice with I/R injury were injected with the gene expression-modified vectors, after which cardiac function, hemodynamics, myocardial enzyme, oxidative stress, and cardiomyocyte apoptosis were analyzed. RESULTS I/R mice showed LINC00461 and Myd88 up-regulation and miR-185-3p down-regulation. Down-regulating LINC00461 or up-regulating miR-185-3p recovered cardiac function, reduced myocardial enzyme levels, and attenuated oxidative stress and cardiomyocyte apoptosis in mice with I/R. miR-185-3p overexpression rescued the promoting effect of LINC00461 upregulation on myocardial injury in I/R mice. CONCLUSION LINC00461 knockdown attenuates myocardial I/R injury via elevating miR-185-3p expression to suppress Myd88 expression.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Xiaochen Wang
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Tingting Fan
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Zhidan Luo
- Department of Geriatrics, Chongqing People's Hospital, Chongqing, 400013, China
| | - Mengqing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Guangquan Hu
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Yue Li
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Yi Liang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| | - Banglong Xu
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
7
|
Abstract
Heart failure is a growing health problem resulting in the decreased life expectancy of patients and severely increased the healthcare burden. Penetrating research on the pathogenesis and regulation mechanism of heart failure is important for treatment of heart failure. Epicardial adipose tissue (EAT) has been demonstrated as not only a dynamic organ with biological functions but also an inert lipid store with regulating systemic metabolism. EAT mediates physiological and pathophysiological processes of heart failure by regulating adipogenesis, cardiac remodeling, insulin resistance, cardiac output, and renin angiotensin aldosterone system (RAAS). Moreover, EAT secretes a wide range of adipokines, adrenomedullin, adiponectin, and miRNAs through paracrine, endocrine, and vasocrine pathways, which involve in various extracellular and intracellular mechanism of cardiac-related cells in the progress of cardiovascular disease especially in heart failure. Nevertheless, mechanisms and roles of EAT on heart failure are barely summarized. Understanding the regulating mechanisms of EAT on heart failure may give rise to novel therapeutic targets and will open up innovative strategies to myocardial injury as well as in heart failure.
Collapse
Affiliation(s)
- Ying Song
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China.,Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, 361015, Fujian, China
| | - Fei Song
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China.
| |
Collapse
|
8
|
Nováková T, Macháčková T, Novák J, Hude P, Godava J, Žampachová V, Oppelt J, Zlámal F, Němec P, Bedáňová H, Slabý O, Bienertová-Vašků J, Špinarová L, Krejčí J. Identification of a Diagnostic Set of Endomyocardial Biopsy microRNAs for Acute Cellular Rejection Diagnostics in Patients after Heart Transplantation Using Next-Generation Sequencing. Cells 2019; 8:cells8111400. [PMID: 31698874 PMCID: PMC6912472 DOI: 10.3390/cells8111400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: Acute cellular rejection (ACR) of heart allografts represents the most common reason for graft failure. Endomyocardial biopsies (EMB) are still subject to substantial interobserver variability. Novel biomarkers enabling precise ACR diagnostics may decrease interobserver variability. We aimed to identify a specific subset of microRNAs reflecting the presence of ACR. Patients and Methods: Monocentric retrospective study. A total of 38 patients with the anamnesis of ACR were identified and for each patient three consecutive samples of EMB (with, prior and after ACR) were collected. Sixteen trios were used for next-generation sequencing (exploratory cohort); the resting 22 trios were used for validation with qRT-PCR (validation cohort). Statistical analysis was performed using R software. Results: The analysis of the exploration cohort provided the total of 11 miRNAs that were altered during ACR, the three of which (miR-144, miR-589 and miR-182) were further validated in the validation cohort. Using the levels of all 11 miRNAs and principal component analysis, an ACR score was created with the specificity of 91% and sensitivity of 68% for detecting the presence of ACR in the EMB sample. Conclusion: We identified a set of microRNAs altered in endomyocardial biopsies during ACR and using their relative levels we created a diagnostic score that can be used for ACR diagnosis.
Collapse
Affiliation(s)
- Tereza Nováková
- Department of Cardiovascular Diseases, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691 Brno, Czech Republic
| | - Táňa Macháčková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Novák
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Pathological Physiology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Correspondence: (J.N.); (J.K.); Tel.: +420-54318-2253 (J.N.); +420-54318-3475 (J.K.)
| | - Petr Hude
- Department of Cardiovascular Diseases, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691 Brno, Czech Republic
| | - Július Godava
- Department of Cardiovascular Diseases, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691 Brno, Czech Republic
| | - Víta Žampachová
- Department of Pathology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691 Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Filip Zlámal
- Department of Pathological Physiology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Němec
- Centre of Cardiovascular Surgery and Organ Transplantation, Pekařská 53, 65691 Brno, Czech Republic
| | - Helena Bedáňová
- Centre of Cardiovascular Surgery and Organ Transplantation, Pekařská 53, 65691 Brno, Czech Republic
| | - Ondřej Slabý
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Lenka Špinarová
- Department of Cardiovascular Diseases, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691 Brno, Czech Republic
| | - Jan Krejčí
- Department of Cardiovascular Diseases, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691 Brno, Czech Republic
- Correspondence: (J.N.); (J.K.); Tel.: +420-54318-2253 (J.N.); +420-54318-3475 (J.K.)
| |
Collapse
|
9
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|