1
|
Zhang Y, Wu M, Zhou J, Diao H. Long Non-Coding RNA as a Potential Biomarker for Canine Tumors. Vet Sci 2023; 10:637. [PMID: 37999460 PMCID: PMC10674608 DOI: 10.3390/vetsci10110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer is the leading cause of death in both humans and companion animals. Long non-coding RNA (lncRNA) plays a crucial role in the progression of various types of cancers in humans, involving tumor proliferation, metastasis, angiogenesis, and signaling pathways, and acts as a potential biomarker for diagnosis and targeted treatment. However, research on lncRNAs related to canine tumors is in an early stage. Dogs have long been considered a promising natural model for human disease. This article summarizes the molecular function of lncRNAs as novel biomarkers in various types of canine tumors, providing new insights into canine tumor diagnosis and treatment. Further research on the function and mechanism of lncRNAs is needed, which will benefit both human and veterinary medicine.
Collapse
Affiliation(s)
| | | | | | - Hongxiu Diao
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.W.); (J.Z.)
| |
Collapse
|
2
|
Soh PXY, Khatkar MS, Williamson P. Lymphoma in Border Collies: Genome-Wide Association and Pedigree Analysis. Vet Sci 2023; 10:581. [PMID: 37756103 PMCID: PMC10536503 DOI: 10.3390/vetsci10090581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
There has been considerable interest in studying cancer in dogs and its potential as a model system for humans. One area of research has been the search for genetic risk variants in canine lymphoma, which is amongst the most common canine cancers. Previous studies have focused on a limited number of breeds, but none have included Border Collies. The aims of this study were to identify relationships between Border Collie lymphoma cases through an extensive pedigree investigation and to utilise relationship information to conduct genome-wide association study (GWAS) analyses to identify risk regions associated with lymphoma. The expanded pedigree analysis included 83,000 Border Collies, with 71 identified lymphoma cases. The analysis identified affected close relatives, and a common ancestor was identified for 54 cases. For the genomic study, a GWAS was designed to incorporate lymphoma cases, putative "carriers", and controls. A case-control GWAS was also conducted as a comparison. Both analyses showed significant SNPs in regions on chromosomes 18 and 27. Putative top candidate genes from these regions included DLA-79, WNT10B, LMBR1L, KMT2D, and CCNT1.
Collapse
Affiliation(s)
- Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Mehar Singh Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
3
|
Zhang L, Liang R, Raheem A, Liang L, Zhang X, Cui S. Transcriptomics analysis reveals key lncRNAs and genes related to the infection of feline kidney cell line by panleukopenia virus. Res Vet Sci 2023; 158:203-214. [PMID: 37031469 DOI: 10.1016/j.rvsc.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Feline panleukopenia virus (FPV) can cause a viral disease and is responsible for severe leukopenia, gastroenteritis, and nervous signs with significant economic losses. Biochemically long non-coding RNAs (lncRNAs) can regulate the expression of mRNA in different ways, thereby causing the functional changes in host cells in response to viral infection. However, no attention has been paid until now to investigate the link between FPV pathogenesis and lncRNA. Here, through RNA sequencing, we performed a comprehensive analysis of lncRNA and mRNA in F81 cells after FPV-BJ04 strain infection. Consistent with previous studies, our data showed that lncRNAs have distinct features from mRNA. A total of 291 lncRNAs and 873 mRNAs were differentially expressed in F81 cells after FPV-BJ04 infection. GO and KEGG enrichment analysis showed that the differentially upregulated lncRNAs target genes were mainly involved in the positive regulation of transcription by RNA polymerase II and MAPK signaling pathway. The differentially downregulated lncRNAs target genes were mainly involved in the mRNA splicing and endocytosis. In addition, the differentially expressed immune pathway related genes that are targeted by lncRNA were also screened out to construct a lncRNA-miRNA-mRNA axes as a potential novel biomarkers in regulating the immune response of feline against FPV infection. Our results contribute to understand the basic role of lncRNA in F81 cells during FPV infection and lay the foundation for following research.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276000, China.
| | - Ruiying Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Xinglin Zhang
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276000, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
4
|
Zhou Q, Zhang Y, Zhao M, Zhao X, Xue H, Xiao S. Knockdown of the long non‑coding RNA CACNA1G‑AS1 enhances cytotoxicity and apoptosis of human diffuse large B cell lymphoma by regulating miR‑3160‑5p. Exp Ther Med 2022; 24:627. [PMID: 36160896 PMCID: PMC9490116 DOI: 10.3892/etm.2022.11564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract: Long non-coding RNAs (lncRNAs) have been confirmed to be connected with tumor proliferation, apoptosis, metastasis and recurrence. Previous studies have indicated that lncRNA calcium voltage-gated channel subunit α1 G (CACNA1G)-antisense 1 (AS1) can function as a pro-oncogene in several types of cancer. However, the specific role and mechanism of CACNA1G-AS1 have not been fully elucidated in human diffuse large B cell lymphoma (DLBCL). In the present study, CACNA1G-AS1 expression was verified in DLBCL tissues and cells by reverse transcription-quantitative PCR, and the relationship between CACNA1G-AS1 and microRNA (miR)-3160-5p was confirmed using luciferase reporter assays. After CACNA1G-AS1-knockdown and miR-3160-5p-overexpression, MTT, colony formation and flow cytometry assays were conducted to assess the changes in the cytotoxicity and apoptosis of OCI-Ly10 and SUDHL-4 cells. In addition, in vivo experiments were performed to determine the impact of CACNA1G-AS1-knockdown on tumor growth and apoptosis. It was revealed that CACNA1G-AS1 was highly expressed in DLBCL tissues and cells and that expression of CACNA1G-AS1 was associated with the clinical stage of DLBCL. Functionally, CACNA1G-AS1-knockdown was demonstrated to increase cytotoxicity and expedite apoptosis in DLBCL cells in vitro and in vivo. In addition, CACNA1G-AS1 could downregulate miR-3160-5p by targeting binding in DLBCL cells. Overexpression of miR-3160-5p had the same effects on the cytotoxicity and apoptosis of DLBCL cells as CACNA1G-AS1-knockdown. Overall, the present study revealed that CACNA1G-AS1-knockdown and miR-3160-5p-overexpression could prevent DLBCL carcinogenesis, which might provide novel therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Qiqi Zhou
- Department of Oncology, The Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yan Zhang
- Department of Internal Medicine, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Meiqing Zhao
- Department of Hematology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xia Zhao
- Department of Lymphoma and Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266500, P.R. China
| | - Hongwei Xue
- Department of Lymphoma and Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266500, P.R. China
| | - Shuxin Xiao
- Department of Lymphoma and Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266500, P.R. China
| |
Collapse
|
5
|
Hypermethylation-Mediated Silencing of CIDEA, MAL and PCDH17 Tumour Suppressor Genes in Canine DLBCL: From Multi-Omics Analyses to Mechanistic Studies. Int J Mol Sci 2022; 23:ijms23074021. [PMID: 35409379 PMCID: PMC9000013 DOI: 10.3390/ijms23074021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gene expression is controlled by epigenetic deregulation, a hallmark of cancer. The DNA methylome of canine diffuse large B-cell lymphoma (cDLBCL), the most frequent malignancy of B-lymphocytes in dog, has recently been investigated, suggesting that aberrant hypermethylation of CpG loci is associated with gene silencing. Here, we used a multi-omics approach (DNA methylome, transcriptome and copy number variations) combined with functional in vitro assays, to identify putative tumour suppressor genes subjected to DNA methylation in cDLBCL. Using four cDLBCL primary cell cultures and CLBL-1 cells, we found that CiDEA, MAL and PCDH17, which were significantly suppressed in DLBCL samples, were hypermethylated and also responsive (at the DNA, mRNA and protein level) to pharmacological unmasking with hypomethylating drugs and histone deacetylase inhibitors. The regulatory mechanism underneath the methylation-dependent inhibition of those target genes expression was then investigated through luciferase and in vitro methylation assays. In the most responsive CpG-rich regions, an in silico analysis allowed the prediction of putative transcription factor binding sites influenced by DNA methylation. Interestingly, regulatory elements for AP2, MZF1, NF-kB, PAX5 and SP1 were commonly identified in all three genes. This study provides a foundation for characterisation and experimental validation of novel epigenetically-dysregulated pathways in cDLBCL.
Collapse
|
6
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
7
|
Massimini M, Romanucci M, De Maria R, Della Salda L. An Update on Molecular Pathways Regulating Vasculogenic Mimicry in Human Osteosarcoma and Their Role in Canine Oncology. Front Vet Sci 2021; 8:722432. [PMID: 34631854 PMCID: PMC8494780 DOI: 10.3389/fvets.2021.722432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.
Collapse
|
8
|
Integrated analysis of lncRNAs and mRNAs reveals key trans-target genes associated with ETEC-F4ac adhesion phenotype in porcine small intestine epithelial cells. BMC Genomics 2020; 21:780. [PMID: 33172394 PMCID: PMC7653856 DOI: 10.1186/s12864-020-07192-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation at the transcriptional and post-transcriptional levels. LncRNAs are belonging to a large class of transcripts with ≥200 nt in length which do not code for proteins, have been widely investigated in various physiological and pathological contexts by high-throughput sequencing techniques and bioinformatics analysis. However, little is known about the regulatory mechanisms by which lncRNAs regulate genes that are associated with Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotype in small intestine epithelial cells of Large White piglets. To address this, we used RNA sequencing to profile lncRNAs and mRNAs of small intestine epithelial cells in Large White piglets differing in their ETEC-F4 adhesion phenotypes and ITGB5 genotypes. Eight male piglets were used in this study and were divided into two groups on the basis of their adhesion phenotype and ITGB5 genotypes, a candidate gene for F4ac receptor. Non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS In total, 78 differentially expressed lncRNAs (DE-lncRNA) and 223 differentially expressed mRNAs (log2 |FC| > 1, P < 0.05) were identified in the comparison of non-adhesive vs. adhesive small intestine epithelial cells. Furthermore, cis- and trans-regulatory target genes of DE-lncRNAs were identified, then interaction networks of lncRNAs and their cis- and trans-target differentially expressed genes (DEGs) were constructed separately. A total of 194 cis-targets were involved in the lncRNAs-cis genes interaction network and 61 trans-targets, were involved in lncRNA-trans gene interaction network that we constructed. We determined that cis-target genes were involved in alcoholism, systemic lupus erythematosus, viral carcinogenesis and malaria. Whereas trans-target DEGs were engaged in three important pathways related to the ETEC-F4 adhesion phenotype namely cGMP-PKG signaling pathway, focal adhesion, and adherens junction. The trans-target DEGs which directly involved in these pathways are KCNMB1 in cGMP-PKG signaling pathway, GRB2 in focal adhesion pathway and ACTN4 in focal adhesion and adherens junction pathways. CONCLUSION The findings of the current study provides an insight into biological functions and epigenetic regulatory mechanism of lncRNAs on porcine small intestine epithelial cells adhesion to ETEC-F4-ac and piglets' diarrhea susceptibility/resistance.
Collapse
|
9
|
Xavier PLP, Müller S, Fukumasu H. Epigenetic Mechanisms in Canine Cancer. Front Oncol 2020; 10:591843. [PMID: 33194754 PMCID: PMC7646326 DOI: 10.3389/fonc.2020.591843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
A plethora of data has highlighted the role of epigenetics in the development of cancer. Initiation and progression of different cancer types are associated with a variety of changes of epigenetic mechanisms, including aberrant DNA methylation, histone modifications, and miRNA expression. At the same time, advances in the available epigenetic tools allow to investigate and reverse these epigenetic changes and form the basis for the development of anticancer drugs in human oncology. Although human and canine cancer shares several common features, only recently that studies emerged investigating the epigenetic landscape in canine cancer and applying epigenetic modulators to canine cancer. This review focuses on the existing studies involving epigenetic changes in different types of canine cancer and the use of small-molecule inhibitors in canine cancer cells.
Collapse
Affiliation(s)
- Pedro Luiz Porfirio Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Susanne Müller
- Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|
10
|
Avery AC. The Genetic and Molecular Basis for Canine Models of Human Leukemia and Lymphoma. Front Oncol 2020; 10:23. [PMID: 32038991 PMCID: PMC6992561 DOI: 10.3389/fonc.2020.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging details of the gene expression and mutational features of canine lymphoma and leukemia demonstrate areas of similarities and differences between disease subsets in the humans and dogs. Many features of canine diffuse large B-cell lymphoma resemble the ABC form of human DLBCL, including constitutive activation of the NF-kB pathway, and almost universal presence of double expressing MYC/BCL2 lymphomas. Frequent TRAF3 mutations and absence of BCL6 expression are differences with the human disease that need further exploration. Canine peripheral T-cell lymphoma is more common in dogs than in people and behaves in a similarly aggressive manner. Common features of canine and human PTCL include activation of the PI3 kinase pathways, loss of PTEN, and the tumor suppressor CDKN2. There is insufficient data available yet to determine if canine PTCL exhibits the GATA3-TBX21 dichotomy seen in people. Common to all forms of canine lymphoproliferative disease are breed-specific predilections for subsets of disease. This is particularly striking in PTCL, with the Boxer breed being dramatically overrepresented. Breed-specific diseases provide an opportunity for uncovering genetic and environmental risk factors that can aid early diagnosis and prevention.
Collapse
Affiliation(s)
- Anne C Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|