1
|
Han X, Kan H, Shi J, Hou S, Yao X. Isoflurane Preconditioning Alleviates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Inhibiting miR-195-3p Expression. Cardiovasc Toxicol 2024; 24:637-645. [PMID: 38720121 DOI: 10.1007/s12012-024-09869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
To investigate the role of microRNA-195-3p (miR-195-3p) in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. AC16 human cardiomyocyte cells were cultured and pretreated with different concentrations of isoflurane (ISO) (1%, 2%, and 3%), followed by 6 h each of hypoxia and reoxygenation to construct H/R cell models. The optimum ISO concentration was assessed based on the cell viability. miR-195-3p expression was regulated by in vitro cell transfection. Cell viability was determined by MTT assay, and apoptosis was evaluated by flow cytometry. The levels of myocardial injury and inflammation were determined by enzyme-linked immunosorbent assay. Compared with the control group, the cell viability of the H/R group had significantly decreased and that of ISO pretreatment had increased in a dose-dependent manner. Therefore, we selected a 2% ISO concentration for pretreatment. MiR-195-3p expression had significantly increased in the H/R group and decreased after 2% ISO pretreatment. Additionally, the number of apoptotic cells and the levels of lactate dehydrogenase, creatine kinase-myoglobin binding, cardiac troponin I, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α had increased significantly. ISO preconditioning inhibited H/R-induced AC16 cell damage, whereas miR-195-3p overexpression reversed the protective effects of ISO on cardiomyocytes. The expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was reduced in the H/R-induced AC16 cells, and PTEN is a downstream target gene of miR-195-3p. Preconditioning with 2% ISO plays a protective role in H/R-induced AC16 cell damage by inhibiting miR-195-3p expression.
Collapse
Affiliation(s)
- Xiaofei Han
- Department of Anesthesiology, Beijing Stomatological Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Hongyuan Kan
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Jingyi Shi
- Department of Anesthesiology, Xingtai People's Hospital, No. 818, Xiangdu North Road, Xiangdu District, Xingtai, 054000, China
| | - Shaoke Hou
- Department of Anesthesiology, Xingtai People's Hospital, No. 818, Xiangdu North Road, Xiangdu District, Xingtai, 054000, China
| | - Xinyu Yao
- Department of Anesthesiology, Xingtai People's Hospital, No. 818, Xiangdu North Road, Xiangdu District, Xingtai, 054000, China.
| |
Collapse
|
2
|
Abdelhafiz AS, Nabil R, Ghareeb M, Ibraheem D, Ali A, Elshazly SS, Soliman AM, Bakr YM. Plasma long non-coding RNAs as biomarkers for bone marrow infiltration and stage in diffuse large B-cell lymphoma. Int J Immunopathol Pharmacol 2024; 38:3946320241292665. [PMID: 39393794 PMCID: PMC11483759 DOI: 10.1177/03946320241292665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
We aimed to evaluate the expression profiles of five circulating lncRNAs (HOTAIR, MALAT-1, XIST, SNHG15, and H19) in DLBCL patients and explore potential associations between their expression and different clinicopathological features. Diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma (NHL), exhibits marked genetic and clinical heterogeneity, emphasizing the need for improved tools for risk stratification. Long non-coding RNAs (lncRNAs) emerged as regulators in different cellular processes and have been linked to cancer pathogenesis. Real-time quantitative PCR (qRT-PCR) was used to evaluate lncRNA expression in the plasma of 65 newly diagnosed adult DLBCL patients and 30 age-matched controls. HOTAIR expression was significantly elevated in DLBCL patients, while SNHG15 was significantly downregulated. Interestingly, both HOTAIR and SNHG15 demonstrated robust discriminatory power between DLBCL and healthy individuals, achieving area under the curve (AUC) values of 69% and 71%, respectively. H19 expression displayed a significant association with early-stage (stage I) DLBCL. While upregulated HOTAIR was a significant independent predictor of poor prognosis, high SNHG15 expression appeared to have a protective effect on mortality rates. Our findings suggest that circulating lncRNA expression patterns are promising tools as non-invasive biomarkers for diagnosis of DLBCL. Specific lncRNAs, such as HOTAIR, SNHG15, and H19, could offer potential for disease staging and patient prognosis. Long-term follow-up studies are recommended to further elucidate the interplay between these lncRNAs and survival rates, as well as their interactions with other genetic and pathological features of DLBCL.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Female
- Middle Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Aged
- Bone Marrow/pathology
- Bone Marrow/metabolism
- Adult
- Neoplasm Staging
- Prognosis
- Gene Expression Regulation, Neoplastic
- Case-Control Studies
Collapse
Affiliation(s)
- Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute Cairo University, Cairo, Egypt
| | - Reem Nabil
- Department of Clinical Pathology, National Cancer Institute Cairo University, Cairo, Egypt
| | - Mohammed Ghareeb
- Department of Medical Oncology, National Cancer Institute Cairo University, Cairo, Egypt
| | - Dalia Ibraheem
- Department of Medical Oncology, National Cancer Institute Cairo University, Cairo, Egypt
| | - Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Chest Diseases, Abbasia Chest Hospital, Ministry of Health and Population, Cairo, Egypt
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait
| | - Samar S. Elshazly
- Department of Clinical Pathology, National Cancer Institute Cairo University, Cairo, Egypt
| | | | - Yasser M Bakr
- Cancer Biology Department, National Cancer Institute Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Pang B, Gan Y, Wang J, Qu S. lncRNA ARAP1-AS1 enhances proliferation and impairs apoptosis of lymphoma cells by sponging miR-6867-5p. Cancer Biomark 2023; 38:333-342. [PMID: 37599524 DOI: 10.3233/cbm-230103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Numerous evidence have suggested the vital role of lncRNAs in human tumorigenesis. And lncRNA APAP1-AS1 has been proved to act as an oncogene. OBJECTIVE Nevertheless, the molecular process underlying ARAP1-AS1 for the lymphoma progression has not been well studied. METHODS RT-qPCR was used to ascertain the miR-6867-5p and ARAP1-AS1 in lymphoma cells and tissues. The localization of ARAP1-AS1 was determined via subcellular fractionation analysis. A xenograft model was used to investigate the influence of ARAP1-AS1 in formation of tumor in vivo. In addition, interactions between ARAP-AS1 and miR-6867-5p were tested by bioinformatics analysis, RIP assay, luciferase reporter and Pearson's correlation analysis. Combined with loss-of-function experiments, MTT assays and flow cytometry were performed to evaluate the function of miR-6867-5p and also ARAP-AS1 in proliferation and apoptosis of lymphoma cells, respectively. RESULTS ARAP1-AS1 was remarkably upregulated in lymphoma cells and tissues, while miR-6867-5p expression was downregulated. Furthermore, high ARAP1-AS1 expression suppressed miR-6867-5p expression in lymphoma cell lines (Raji and CA46), and Pearson's analysis showed negative correlation between ARAP1-AS1 expression and also miR-6867-5p expression. In addition, knockdown of ARAP1-AS1 resulted in weakened cell viability and uplifted apoptosis rate of lymphoma cells (Raji and CA46) as well as a delay in the tumor growth in vivo. Further investigations illustrated that miR-6867-5p inhibitor reversed all above biological activities. CONCLUSIONS LncRNA ARAP1-AS1 served as a tumor-promoter in lymphoma cells by sponging with miR-6867-5p, which may help to provide potential therapeutic target gene for lymphoma patients.
Collapse
Affiliation(s)
- Bo Pang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Yanfang Gan
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jing Wang
- Department of Cardiovascular Medicine, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Shifang Qu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study. Biomedicines 2022; 10:biomedicines10061322. [PMID: 35740344 PMCID: PMC9219780 DOI: 10.3390/biomedicines10061322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is characterized by a great variability in patient outcomes, resulting in the critical need for identifying new molecular prognostic biomarkers. This study aimed to identify novel circulating prognostic biomarkers based on an miRNA/lncRNA-associated ceRNA network for NHL. Using bioinformatic analysis, we identified the miRNA-lncRNA pairs, and using RT-qPCR, we analyzed their plasma levels in a cohort of 113 NHL patients to assess their prognostic value. Bioinformatic analysis identified SNHG16 and SNHG6 as hsa-miR-20a-5p and hsa-miR-181a-5p sponges, respectively. Plasma levels of hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNG6 were significantly associated with more aggressive disease and IPI/FLIPI scores. Moreover, we found that patients with risk expression profiles of hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNHG6 presented a higher risk of positive bone marrow involvement. Moreover, hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNHG6 pairs’ plasma levels were associated with overall survival and progression-free survival of NHL patients, being independent prognostic factors in a multivariate Cox analysis. The prediction models incorporating the ceRNA network expression analysis improved the predictive capacity compared to the model, which only considered the clinicopathological variables. There are still few studies on using the ceRNA network as a potential prognostic biomarker, particularly in NHL, which may permit the implementation of a more personalized management of these patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-069 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000 (ext. 5414)
| |
Collapse
|
5
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. ceRNA Network of lncRNA/miRNA as Circulating Prognostic Biomarkers in Non-Hodgkin Lymphomas: Bioinformatic Analysis and Assessment of Their Prognostic Value in an NHL Cohort. Int J Mol Sci 2021; 23:ijms23010201. [PMID: 35008626 PMCID: PMC8745130 DOI: 10.3390/ijms23010201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Research has been focusing on identifying novel biomarkers to better stratify non-Hodgkin lymphoma patients based on prognosis. Studies have demonstrated that lncRNAs act as miRNA sponges, creating ceRNA networks to regulate mRNA expression, and its deregulation is associated with lymphoma development. This study aimed to identify novel circulating prognostic biomarkers based on miRNA/lncRNA-associated ceRNA network for NHL. Herein, bioinformatic analysis was performed to construct ceRNA networks for hsa-miR-150-5p and hsa-miR335-5p. Then, the prognostic value of the miRNA–lncRNA pairs’ plasma levels was assessed in a cohort of 113 NHL patients. Bioinformatic analysis identified MALAT1 and NEAT1 as hsa-miR-150-5p and has-miR-335-5p sponges, respectively. Plasma hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 levels were significantly associated with more aggressive and advanced disease. The overall survival and progression-free survival analysis indicated that hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 pairs’ plasma levels were remarkably associated with NHL patients’ prognosis, being independent prognostic factors in a multivariate Cox analysis. Low levels of hsa-miR-150-5p and hsa-miR-335-5p combined with high levels of the respective lncRNA pair were associated with poor prognosis of NHL patients. Overall, the analysis of ceRNA network expression levels may be a useful prognostic biomarker for NHL patients and could identify patients who could benefit from more intensive treatments.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cohort Studies
- Computational Biology
- Disease-Free Survival
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Lymphoma, Non-Hodgkin/blood
- Lymphoma, Non-Hodgkin/genetics
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Prognosis
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5414)
| |
Collapse
|
6
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Competitive Endogenous RNA Network Involving miRNA and lncRNA in Non-Hodgkin Lymphoma: Current Advances and Clinical Perspectives. Biomedicines 2021; 9:1934. [PMID: 34944752 PMCID: PMC8698845 DOI: 10.3390/biomedicines9121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous malignancy with variable patient outcomes. There is still a lack of understanding about the different players involved in lymphomagenesis, and the identification of new diagnostic and prognostic biomarkers is urgent. MicroRNAs and long non-coding RNAs emerged as master regulators of B-cell development, and their deregulation has been associated with the initiation and progression of lymphomagenesis. They can function by acting alone or, as recently proposed, by creating competing endogenous RNA (ceRNA) networks. Most studies have focused on individual miRNAs/lncRNAs function in lymphoma, and there is still limited data regarding their interactions in lymphoma progression. The study of miRNAs' and lncRNAs' deregulation in NHL, either alone or as ceRNAs networks, offers new insights into the molecular mechanisms underlying lymphoma pathogenesis and opens a window of opportunity to identify potential diagnostic and prognostic biomarkers. In this review, we summarized the current knowledge regarding the role of miRNAs and lncRNAs in B-cell lymphoma, including their interactions and regulatory networks. Finally, we summarized the studies investigating the potential of miRNAs and lncRNAs as clinical biomarkers, with a special focus on the circulating profiles, to be applied as a non-invasive, easy-to-obtain, and reproducible liquid biopsy for dynamic management of NHL patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| |
Collapse
|
7
|
miRNA- and lncRNA-Based Therapeutics for Non-Hodgkin’s Lymphoma: Moving towards an RNA-Guided Precision Medicine. Cancers (Basel) 2021; 13:cancers13246324. [PMID: 34944942 PMCID: PMC8699447 DOI: 10.3390/cancers13246324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-Hodgkin’s lymphoma (NHL) is a very heterogenous class of hematological cancers, with variable patient outcomes. Therefore, there is an urgent need to develop new and more effective therapeutic approaches. MiRNAs and lncRNAs have emerged as the central gene expression regulators, and their deregulation has been reported to be involved in lymphomagenesis. Given their ability to simultaneously modulate multiple targets, they provide an attractive therapeutic approach to treat NHL patients. In this review, we discuss the scientific rationale behind miRNA/lncRNA-based therapies in NHL and the different targeting technologies, such as antisense oligonucleotides, CRISPR-Cas9, and nanomedicines. Abstract Increasing evidence has demonstrated the functional roles of miRNAs and lncRNAs in lymphoma onset and progression, either by acting as tumor-promoting ncRNAs or as tumor suppressors, emphasizing their appeal as lymphoma therapeutics. In fact, their intrinsic ability to modulate multiple dysregulated genes and/or signaling pathways makes them an attractive therapeutic approach for a multifactorial pathology like lymphoma. Currently, the clinical application of miRNA- and lncRNA-based therapies still faces obstacles regarding effective delivery systems, off-target effects, and safety, which can be minimized with the appropriate chemical modifications and the development of tumor site-specific delivery approaches. Moreover, miRNA- and lncRNA-based therapeutics are being studied not only as monotherapies but also as complements of standard treatment regimens to provide a synergic effect, improving the overall treatment efficacy and reducing the therapeutic resistance. In this review, we summarize the fundamentals of miRNA- and lncRNA-based therapeutics by discussing the different types of delivery systems, with a focus on those that have been investigated in lymphoma in vitro and in vivo. Moreover, we described the ongoing clinical trials of novel miRNA- and lncRNA-based therapeutics in lymphoma.
Collapse
|