1
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
2
|
Bowles KR, Pugh DA, Pedicone C, Oja L, Weitzman SA, Liu Y, Chen JL, Disney MD, Goate AM. Development of MAPT S305 mutation models exhibiting elevated 4R tau expression, resulting in altered neuronal and astrocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543224. [PMID: 37333200 PMCID: PMC10274740 DOI: 10.1101/2023.06.02.543224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Due to the importance of 4R tau in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in iPSC-derived neurons, which express very low levels of 4R tau. To address this problem we have developed a panel of isogenic iPSC lines carrying the MAPT splice-site mutations S305S, S305I or S305N, derived from four different donors. All three mutations significantly increased the proportion of 4R tau expression in iPSC-neurons and astrocytes, with up to 80% 4R transcripts in S305N neurons from as early as 4 weeks of differentiation. Transcriptomic and functional analyses of S305 mutant neurons revealed shared disruption in glutamate signaling and synaptic maturity, but divergent effects on mitochondrial bioenergetics. In iPSC-astrocytes, S305 mutations induced lysosomal disruption and inflammation and exacerbated internalization of exogenous tau that may be a precursor to the glial pathologies observed in many tauopathies. In conclusion, we present a novel panel of human iPSC lines that express unprecedented levels of 4R tau in neurons and astrocytes. These lines recapitulate previously characterized tauopathy-relevant phenotypes, but also highlight functional differences between the wild type 4R and mutant 4R proteins. We also highlight the functional importance of MAPT expression in astrocytes. These lines will be highly beneficial to tauopathy researchers enabling a more complete understanding of the pathogenic mechanisms underlying 4R tauopathies across different cell types.
Collapse
Affiliation(s)
- KR Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - DA Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - C Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - L Oja
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - SA Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Y Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - JL Chen
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - MD Disney
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - AM Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
3
|
Briel N, Ruf VC, Pratsch K, Roeber S, Widmann J, Mielke J, Dorostkar MM, Windl O, Arzberger T, Herms J, Struebing FL. Single-nucleus chromatin accessibility profiling highlights distinct astrocyte signatures in progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol 2022; 144:615-635. [PMID: 35976433 PMCID: PMC9468099 DOI: 10.1007/s00401-022-02483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/31/2023]
Abstract
Tauopathies such as progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) exhibit characteristic neuronal and glial inclusions of hyperphosphorylated Tau (pTau). Although the astrocytic pTau phenotype upon neuropathological examination is the most guiding feature in distinguishing both diseases, regulatory mechanisms controlling their transitions into disease-specific states are poorly understood to date. Here, we provide accessible chromatin data of more than 45,000 single nuclei isolated from the frontal cortex of PSP, CBD, and control individuals. We found a strong association of disease-relevant molecular changes with astrocytes and demonstrate that tauopathy-relevant genetic risk variants are tightly linked to astrocytic chromatin accessibility profiles in the brains of PSP and CBD patients. Unlike the established pathogenesis in the secondary tauopathy Alzheimer disease, microglial alterations were relatively sparse. Transcription factor (TF) motif enrichments in pseudotime as well as modeling of the astrocytic TF interplay suggested a common pTau signature for CBD and PSP that is reminiscent of an inflammatory immediate-early response. Nonetheless, machine learning models also predicted discriminatory features, and we observed marked differences in molecular entities related to protein homeostasis between both diseases. Predicted TF involvement was supported by immunofluorescence analyses in postmortem brain tissue for their highly correlated target genes. Collectively, our data expand the current knowledge on risk gene involvement (e.g., MAPT, MAPK8, and NFE2L2) and molecular pathways leading to the phenotypic changes associated with CBD and PSP.
Collapse
Affiliation(s)
- Nils Briel
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Munich Medical Research School, Faculty of Medicine, Ludwig-Maximilians-University, Bavariaring 19, 80336 Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Katrin Pratsch
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Jeannine Widmann
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Janina Mielke
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Mario M. Dorostkar
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Otto Windl
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| |
Collapse
|
4
|
Verkhratsky A, Li B, Scuderi C, Parpura V. Principles of Astrogliopathology. ADVANCES IN NEUROBIOLOGY 2021; 26:55-73. [PMID: 34888830 DOI: 10.1007/978-3-030-77375-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of astrocytes in the nervous system pathology was early on embraced by neuroscientists at end of the nineteenth and the beginning of the twentieth century, only to be pushed aside by neurone-centric dogmas during most of the twentieth century. However, the last decade of the twentieth century and the twenty-first century have brought the astroglial "renaissance", which has put astroglial cells as key players in pathophysiology of most if not all disorders of the nervous system and has regarded astroglia as a fertile ground for therapeutic intervention.Astrocytic contribution to neuropathology can be primary, whereby cell-autonomous changes, such as mutations in gene encoding for glial fibrillary acidic protein, can drive the pathologic progression, in this example, Alexander disease. They can also be secondary, when astrocytes respond to a variety of insults to the nervous tissue. Regardless of their origin, being cell-autonomous or not, changes in astroglia that occur in pathology, that is, astrogliopathology, can be contemporary and arbitrary classified into four forms: (i) reactive astrogliosis, (ii) astrocytic atrophy with loss of function, (iii) pathological remodelling of astrocytes and (iv) astrodegeneration morphologically manifested as clasmatodendrosis. Inevitably, as with any other classification, this classification of astrogliopathology awaits its revision that shall be rooted in new discoveries and concepts.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Baoman Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Preman P, TCW J, Calafate S, Snellinx A, Alfonso-Triguero M, Corthout N, Munck S, Thal DR, Goate AM, De Strooper B, Arranz AM. Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques. Mol Neurodegener 2021; 16:68. [PMID: 34563212 PMCID: PMC8467145 DOI: 10.1186/s13024-021-00487-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Increasing evidence for a direct contribution of astrocytes to neuroinflammatory and neurodegenerative processes causing Alzheimer's disease comes from molecular and functional studies in rodent models. However, these models may not fully recapitulate human disease as human and rodent astrocytes differ considerably in morphology, functionality, and gene expression. RESULTS To address these challenges, we established an approach to study human astrocytes within the mouse brain by transplanting human induced pluripotent stem cell (hiPSC)-derived astrocyte progenitors into neonatal brains. Xenografted hiPSC-derived astrocyte progenitors differentiated into astrocytes that integrated functionally within the mouse host brain and matured in a cell-autonomous way retaining human-specific morphologies, unique features, and physiological properties. In Alzheimer´s chimeric brains, transplanted hiPSC-derived astrocytes responded to the presence of amyloid plaques undergoing morphological changes that seemed independent of the APOE allelic background. CONCLUSIONS In sum, we describe here a promising approach that consist of transplanting patient-derived and genetically modified astrocytes into the mouse brain to study human astrocyte pathophysiology in the context of Alzheimer´s disease.
Collapse
Affiliation(s)
- Pranav Preman
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Julia TCW
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sara Calafate
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - An Snellinx
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Maria Alfonso-Triguero
- grid.427629.cAchucarro Basque Center for Neuroscience, Leioa, Spain ,grid.11480.3c0000000121671098Department of Neurosciences, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Nikky Corthout
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Sebastian Munck
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Dietmar Rudolf Thal
- grid.5596.f0000 0001 0668 7884Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Department of Pathology, KU Leuven (University of Leuven), University Hospital Leuven, Leuven, Belgium
| | - Alison M Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bart De Strooper
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,grid.83440.3b0000000121901201Dementia Research Institute, University College London, London, UK
| | - Amaia M Arranz
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,grid.427629.cAchucarro Basque Center for Neuroscience, Leioa, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Kacířová M, Železná B, Blažková M, Holubová M, Popelová A, Kuneš J, Šedivá B, Maletínská L. Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22. J Neuroinflammation 2021; 18:141. [PMID: 34158075 PMCID: PMC8218481 DOI: 10.1186/s12974-021-02190-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background Obesity leads to low-grade inflammation in the adipose tissue and liver and neuroinflammation in the brain. Obesity-induced insulin resistance (IR) and neuroinflammation seem to intensify neurodegeneration including Alzheimer’s disease. In this study, the impact of high-fat (HF) diet-induced obesity on potential neuroinflammation and peripheral IR was tested separately in males and females of THY-Tau22 mice, a model of tau pathology expressing mutated human tau protein. Methods Three-, 7-, and 11-month-old THY-Tau22 and wild-type males and females were tested for mobility, anxiety-like behavior, and short-term spatial memory in open-field and Y-maze tests. Plasma insulin, free fatty acid, cholesterol, and leptin were evaluated with commercial assays. Liver was stained with hematoxylin and eosin for histology. Brain sections were 3′,3′-diaminobenzidine (DAB) and/or fluorescently detected for ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and tau phosphorylated at T231 (pTau (T231)), and analyzed. Insulin signaling cascade, pTau, extracellular signal-regulated kinase 1/2 (ERK1/2), and protein phosphatase 2A (PP2A) were quantified by western blotting of hippocampi of 11-month-old mice. Data are mean ± SEM and were subjected to Mann-Whitney t test within age and sex and mixed-effects analysis and Bonferroni’s post hoc test for age comparison. Results Increased age most potently decreased mobility and increased anxiety in all mice. THY-Tau22 males showed impaired short-term spatial memory. HF diet increased body, fat, and liver weights and peripheral IR. HF diet-fed THY-Tau22 males showed massive Iba1+ microgliosis and GFAP+ astrocytosis in the hippocampus and amygdala. Activated astrocytes colocalized with pTau (T231) in THY-Tau22, although no significant difference in hippocampal tau phosphorylation was observed between 11-month-old HF and standard diet-fed THY-Tau22 mice. Eleven-month-old THY-Tau22 females, but not males, on both diets showed decreased synaptic and postsynaptic plasticity. Conclusions Significant sex differences in neurodegenerative signs were found in THY-Tau22. Impaired short-term spatial memory was observed in 11-month-old THY-tau22 males but not females, which corresponded to increased neuroinflammation colocalized with pTau(T231) in the hippocampi and amygdalae of THY-Tau22 males. A robust decrease in synaptic and postsynaptic plasticity was observed in 11-month-old females but not males. HF diet caused peripheral but not central IR in mice of both sexes. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02190-3.
Collapse
Affiliation(s)
- Miroslava Kacířová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Michaela Blažková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Blanka Šedivá
- Department of Mathematics, University of West Bohemia, Univerzitní 2732/8, 301 00, Pilsen, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic.
| |
Collapse
|
7
|
Mah D, Zhao J, Liu X, Zhang F, Liu J, Wang L, Linhardt R, Wang C. The Sulfation Code of Tauopathies: Heparan Sulfate Proteoglycans in the Prion Like Spread of Tau Pathology. Front Mol Biosci 2021; 8:671458. [PMID: 34095227 PMCID: PMC8173255 DOI: 10.3389/fmolb.2021.671458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathies are a heterogenous family of progressive neurodegenerative diseases defined by the appearance of proteinaceous lesions within the brain composed of abnormally folded species of Microtubule Associated Protein Tau (tau). Alzheimer's Disease (AD), the most common tauopathy, is the leading cause of cognitive decline among the elderly and is responsible for more than half of all cases of senile dementia worldwide. The characteristic pathology of many tauopathies-AD included-presents as Neurofibrillary Tangles (NFTs), insoluble inclusions found within the neurons of the central nervous system composed primarily of tau protein arranged into Paired Helical Fibrils (PHFs). The spatial extent of this pathology evolves in a remarkably consistent pattern over the course of disease progression. Among the leading hypotheses which seek to explain the stereotypical progression of tauopathies is the prion model, which proposes that the spread of tau pathology is mediated by the transmission of self-propagating tau conformers between cells in a fashion analogous to the mechanism of communicable prion diseases. Protein-glycan interactions between tau and Heparan Sulfate Proteoglycans (HSPGs) have been implicated as a key facilitator in each stage of the prion-like propagation of tau pathology, from the initial secretion of intracellular tau protein into the extracellular matrix, to the uptake of pathogenic tau seeds by cells, and the self-assembly of tau into higher order aggregates. In this review we outline the biochemical basis of the tau-HS interaction and discuss our current understanding of the mechanisms by which these interactions contribute to the propagation of tau pathology in tauopathies, with a particular focus on AD.
Collapse
Affiliation(s)
- Dylan Mah
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyue Liu
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Harvard Medical School, Harvard University, Boston, MA, United States
| | - Fuming Zhang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jian Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lianchun Wang
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Robert Linhardt
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
8
|
Charvériat M, Mouthon F, Rein W, Verkhratsky A. Connexins as therapeutic targets in neurological and neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166098. [PMID: 33545299 DOI: 10.1016/j.bbadis.2021.166098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
Astrocytes represent the reticular part of the central nervous system; gap junctions formed by connexins Cx43, Cx30- and Cx26 provide for homocellular astrocyte-astrocyte coupling, whereas connexins Cx30, Cx32, Cx43, and Cx47 connect astrocytes and oligodendrocytes. Astroglial networks are anatomically and functionally segregated being homologous to neuronal ensembles. Connexons, gap junctions and hemichannels (unpaired connexons) are affected in various neuropathologies from neuropsychiatric to neurodegenerative diseases. Manipulation of astrocytic connexins modulates the size and outreach of astroglial syncytia thus affecting astroglial homeostatic support. Modulation of astrocytic connexin significantly modifies pharmacological profile of many CNS drugs, which represents an innovative therapeutic approach for CNS disorders; this approach is now actively tested in pre-clinical and clinical studies. Wide combination of connexin modulators with CNS drugs open new promising perspectives for fundamental studies and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - A Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
9
|
Abstract
In the twentieth century, neuropsychiatric disorders have been perceived solely from a neurone-centric point of view, which considers neurones as the key cellular elements of pathological processes. This dogma has been challenged thanks to the better comprehension of the brain functioning, which, even if far from being complete, has revealed the complexity of interactions that exist between neurones and neuroglia. Glial cells represent a highly heterogeneous population of cells of neural (astroglia and oligodendroglia) and non-neural (microglia) origin populating the central nervous system. The variety of glia reflects the innumerable functions that glial cells perform to support functions of the nervous system. Aberrant execution of glial functions contributes to the development of neuropsychiatric pathologies. Arguably, all types of glial cells are implicated in the neuropathology; however, astrocytes have received particular attention in recent years because of their pleiotropic functions that make them decisive in maintaining cerebral homeostasis. This chapter describes the multiple roles of astrocytes in the healthy central nervous system and discusses the diversity of astroglial responses in neuropsychiatric disorders suggesting that targeting astrocytes may represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Koller EJ, Chakrabarty P. Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Front Mol Neurosci 2020; 13:151. [PMID: 32973446 PMCID: PMC7472665 DOI: 10.3389/fnmol.2020.00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023] Open
Abstract
The inability of individual neurons to compensate for aging-related damage leads to a gradual loss of functional plasticity in the brain accompanied by progressive impairment in learning and memory. Whereas this loss in neuroplasticity is gradual during normal aging, in neurodegenerative diseases such as Alzheimer’s disease (AD), this loss is accelerated dramatically, leading to the incapacitation of patients within a decade of onset of cognitive symptoms. The mechanisms that underlie this accelerated loss of neuroplasticity in AD are still not completely understood. While the progressively increasing proteinopathy burden, such as amyloid β (Aβ) plaques and tau tangles, definitely contribute directly to a neuron’s functional demise, the role of non-neuronal cells in controlling neuroplasticity is slowly being recognized as another major factor. These non-neuronal cells include astrocytes, microglia, and oligodendrocytes, which through regulating brain homeostasis, structural stability, and trophic support, play a key role in maintaining normal functioning and resilience of the neuronal network. It is believed that chronic signaling from these cells affects the homeostatic network of neuronal and non-neuronal cells to an extent to destabilize this harmonious milieu in neurodegenerative diseases like AD. Here, we will examine the experimental evidence regarding the direct and indirect pathways through which astrocytes and microglia can alter brain plasticity in AD, specifically as they relate to the development and progression of tauopathy. In this review article, we describe the concepts of neuroplasticity and glial plasticity in healthy aging, delineate possible mechanisms underlying tau-induced plasticity dysfunction, and discuss current clinical trials as well as future disease-modifying approaches.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Abstract
Astrocytes contribute to the pathogenesis of neurodegenerative proteinopathies as influencing neuronal degeneration or neuroprotection, and also act as potential mediators of the propagation or elimination of disease-associated proteins. Protein astrogliopathies can be observed in different forms of neurodegenerative conditions. Morphological characterization of astrogliopathy is used only for the classification of tauopathies. Currently, at least six types of astrocytic tau pathologies are distinguished. Astrocytic plaques (AP), tufted astrocytes (TAs), ramified astrocytes (RA), and globular astroglial inclusions are seen predominantly in primary tauopathies, while thorn-shaped astrocytes (TSA) and granular/fuzzy astrocytes (GFA) are evaluated in aging-related tau astrogliopathy (ARTAG). ARTAG can be seen in the white and gray matter and subpial, subependymal, and perivascular locations. Some of these overlap with the features of tau pathology seen in Chronic traumatic encephalopathy (CTE). Furthermore, gray matter ARTAG shares features with primary tauopathy-related astrocytic tau pathology. Sequential distribution patterns have been described for tau astrogliopathies. Importantly, astrocytic tau pathology in primary tauopathies can be observed in brain areas without neuronal tau deposition. The various morphologies of tau astrogliopathy might reflect a role in the propagation of pathological tau protein, an early response to a yet unidentified neurodegeneration-inducing event, or, particularly for ARTAG, a response to a repeated or prolonged pathogenic process such as blood-brain barrier dysfunction or local mechanical impact. The concept of tau astrogliopathies and ARTAG facilitated communication among research disciplines and triggered the investigation of the significance of astrocytic lesions in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
12
|
Ferrer I, Andrés-Benito P, Zelaya MV, Aguirre MEE, Carmona M, Ausín K, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E, del Rio JA. Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy. Acta Neuropathol 2020; 139:735-771. [PMID: 31907603 PMCID: PMC7096369 DOI: 10.1007/s00401-019-02122-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Globular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.
Collapse
|
13
|
Ferrer I, Zelaya MV, Aguiló García M, Carmona M, López-González I, Andrés-Benito P, Lidón L, Gavín R, Garcia-Esparcia P, Del Rio JA. Relevance of host tau in tau seeding and spreading in tauopathies. Brain Pathol 2019; 30:298-318. [PMID: 31397930 DOI: 10.1111/bpa.12778] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Human tau seeding and spreading occur following intracerebral inoculation of brain homogenates obtained from tauopathies in transgenic mice expressing natural or mutant tau, and in wild-type (WT) mice. The present study was geared to learning about the patterns of tau seeding, the cells involved and the characteristics of tau following intracerebral inoculation of homogenates from primary age-related tauopathy (PART: neuronal 4Rtau and 3Rtau), aging-related tau astrogliopathy (ARTAG: astrocytic 4Rtau) and globular glial tauopathy (GGT: 4Rtau with neuronal deposits and specific tau inclusions in astrocytes and oligodendrocytes). For this purpose, young and adult WT mice were inoculated unilaterally in the hippocampus or in the lateral corpus callosum with sarkosyl-insoluble fractions from PART, ARTAG and GGT cases, and were killed at variable periods of three to seven months. Brains were processed for immunohistochemistry in paraffin sections. Tau seeding occurred in the ipsilateral hippocampus and corpus callosum and spread to the septal nuclei, periventricular hypothalamus and contralateral corpus callosum, respectively. Tau deposits were mainly found in neurons, oligodendrocytes and threads; the deposits were diffuse or granular, composed of phosphorylated tau, tau with abnormal conformation and 3Rtau and 4Rtau independently of the type of tauopathy. Truncated tau at the aspartic acid 421 and ubiquitination were absent. Tau deposits had the characteristics of pre-tangles. A percentage of intracellular tau deposits co-localized with active (phosphorylated) tau kinases p38 and ERK 1/2. Present study shows that seeding and spreading of human tau into the brain of WT mice involves neurons and glial cells, mainly oligodendrocytes, thereby supporting the idea of a primary role of oligodendrogliopathy, together with neuronopathy, in the progression of tauopathies. In addition, it suggests that human tau inoculation modifies murine tau metabolism with the production and deposition of 3Rtau and 4Rtau, and by activation of specific tau kinases in affected cells.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Maria Victoria Zelaya
- Pathological Anatomy Department, Hospital of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Meritxell Aguiló García
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Margarita Carmona
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Irene López-González
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Hospitalet de Llobregat, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Hospitalet de Llobregat, Spain
| |
Collapse
|
14
|
Verkhratsky A. Astroglial Calcium Signaling in Aging and Alzheimer's Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035188. [PMID: 31110130 DOI: 10.1101/cshperspect.a035188] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrocytes are the homeostatic and protective cells of the central nervous system (CNS). In neurological diseases, astrocytes undergo complex changes, which are subclassified into (1) reactive astrogliosis, an evolutionary conserved defensive rearrangement of cellular phenotype aimed at neuroprotection; (2) pathological remodeling, when astrocytes acquire new features driving pathology; and (3) astrodegeneration, which is manifested by astroglial atrophy and loss of homeostatic functions. In aging brains as well as in the brains affected by Alzheimer's disease (AD), astrocytes acquire both atrophic and reactive phenotypes in a region- and disease-stage-dependent manner. Prevalence of atrophy overreactivity, observed in certain brain regions and in terminal stages of the disease, arguably facilitates the development of neurological deficits. Astrocytes exhibit ionic excitability mediated by changes in intracellular concentration of ions, most importantly of Ca2+ and Na+, with intracellular ion dynamics triggered by the activity of neural networks. AD astrocytes associated with senile plaques demonstrate Ca2+ hyperactivity in the form of aberrant Ca2+ oscillations and pathological long-range Ca2+ waves. Astroglial Ca2+ signaling originating from Ca2+ release from the endoplasmic reticulum is a key factor in initiating astrogliotic response; deficient Ca2+ signaling toolkits observed in entorhinal and prefrontal cortices of AD model animals may account for vulnerability of these regions to the pathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
15
|
Ferrer I, Aguiló García M, Carmona M, Andrés-Benito P, Torrejón-Escribano B, Garcia-Esparcia P, Del Rio JA. Involvement of Oligodendrocytes in Tau Seeding and Spreading in Tauopathies. Front Aging Neurosci 2019; 11:112. [PMID: 31191295 PMCID: PMC6546889 DOI: 10.3389/fnagi.2019.00112] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction: Human tau seeding and spreading occur following intracerebral inoculation into different gray matter regions of brain homogenates obtained from tauopathies in transgenic mice expressing wild or mutant tau, and in wild-type (WT) mice. However, little is known about tau propagation following inoculation in the white matter. Objectives: The present study is geared to learning about the patterns of tau seeding and cells involved following unilateral inoculation in the corpus callosum of homogenates from sporadic Alzheimer's disease (AD), primary age-related tauopathy (PART: neuronal 4Rtau and 3Rtau), pure aging-related tau astrogliopathy (ARTAG: astroglial 4Rtau with thorn-shaped astrocytes TSAs), globular glial tauopathy (GGT: 4Rtau with neuronal tau and specific tau inclusions in astrocytes and oligodendrocytes, GAIs and GOIs, respectively), progressive supranuclear palsy (PSP: 4Rtau with neuronal inclusions, tufted astrocytes and coiled bodies), Pick's disease (PiD: 3Rtau with characteristic Pick bodies in neurons and tau containing fibrillar astrocytes), and frontotemporal lobar degeneration linked to P301L mutation (FTLD-P301L: 4Rtau familial tauopathy). Methods: Adult WT mice were inoculated unilaterally in the lateral corpus callosum with sarkosyl-insoluble fractions or with sarkosyl-soluble fractions from the mentioned tauopathies; mice were killed from 4 to 7 months after inoculation. Brains were fixed in paraformaldehyde, embedded in paraffin and processed for immunohistochemistry. Results: Tau seeding occurred in the ipsilateral corpus callosum and was also detected in the contralateral corpus callosum. Phospho-tau deposits were found in oligodendrocytes similar to coiled bodies and in threads. Moreover, tau deposits co-localized with active (phosphorylated) tau kinases p38 and ERK 1/2, suggesting active tau phosphorylation of murine tau. TSAs, GAIs, GOIs, tufted astrocytes, and tau-containing fibrillar astrocytes were not seen in any case. Tau deposits were often associated with slight myelin disruption and the presence of small PLP1-immunoreactive globules and dots in the ipsilateral corpus callosum 6 months after inoculation of sarkosyl-insoluble fractions from every tauopathy. Conclusions: Seeding and spreading of human tau in the corpus callosum of WT mice occurs in oligodendrocytes, thereby supporting the idea of a role of oligodendrogliopathy in tau seeding and spreading in the white matter in tauopathies. Slight differences in the predominance of threads or oligodendroglial deposits suggest disease differences in the capacity of tau seeding and spreading among tauopathies.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Meritxell Aguiló García
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Benjamin Torrejón-Escribano
- Biology Unit, Scientific and Technical Services, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Scuderi C, Noda M, Verkhratsky A. Editorial: Neuroglia Molecular Mechanisms in Psychiatric Disorders. Front Mol Neurosci 2018; 11:407. [PMID: 30429774 PMCID: PMC6220059 DOI: 10.3389/fnmol.2018.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Zorec R, Županc TA, Verkhratsky A. Astrogliopathology in the infectious insults of the brain. Neurosci Lett 2018; 689:56-62. [PMID: 30096375 DOI: 10.1016/j.neulet.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/28/2022]
Abstract
Astroglia, a heterogeneous type of neuroglia, play key homeostatic functions in the central nervous system (CNS) and represent an important defence system. Impaired homeostatic capacity of astrocytes manifests in diseases and this is mirrored in various astrocyte-based pathological features including reactive astrogliosis, astrodegeneration with astroglial atrophy and pathological remodelling of astrocytes. All of these manifestations are most prominently associated with infectious insults, mediated by bacteria, protozoa and viruses. Here we focus onto neurotropic viruses such as tick-borne encephalitis (TBEV) and Zika virus (ZIKV), both belonging to Flaviviridae and both causing severe neurological impairments. We argue that astrocytes provide a route through which neurotropic infectious agents attack the CNS, since they are anatomically associated with the blood-brain barrier and exhibit aerobic glycolysis, a metabolic specialisation of highly morphologically dynamic cells, which may provide a suitable metabolic milieu for proliferation of infectious agents, including viral bodies.
Collapse
Affiliation(s)
- Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Alexei Verkhratsky
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
19
|
Abstract
Astrocytes, the neural homeostatic cells, play a key role in the information processing in the central nervous system. They express multiple receptors which respond to a number of chemical messengers and get excited as evidenced by an increase in second messengers in short and delayed time domains. Astrocytes secrete numerous neuroactive agents and mount various homeostatic responses. These signal integrating functions are key factors of neuropathology (better termed astroneuropathology): they provide for neuroprotection through both homeostatic support and astroglial reactivity; failure in astroglial defensive or supporting capabilities facilitates evolution of neurological disorders.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|