1
|
Someko H, Yamamoto N, Ito T, Suzuki T, Tsuge T, Yabuzaki H, Dohi E, Kataoka Y. Misleading presentations in functional food trials led by contract research organizations were frequently observed in Japan: meta-epidemiological study. J Clin Epidemiol 2024; 169:111302. [PMID: 38417584 DOI: 10.1016/j.jclinepi.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVES The functional food market has experienced significant growth, leading to an uptick in clinical trials conducted by contract research organizations (CROs). Research focusing on CRO-managed trials and the communication of trial outcomes to the consumer market remains underexplored. This metaepidemiological study aims to evaluate the quality of randomized controlled trials (RCTs) facilitated by prominent CROs in Japan and to examine the quality of the representations used to convey their results to consumers. STUDY DESIGN AND SETTING This study focused on the food trials that were registered in the University Hospital Medical Information Network Clinical Trial Registry or the International Clinical Trials Registry Platform by the top 5 CROs. Press releases of study results or advertisements of food products based on the study results were identified by conducting a Google search. The risk of bias in the RCT publications was independently assessed by 2 reviewers, who also evaluated the presence of "spin" in the abstracts and full texts. An assessment of "spin" in press releases/advertisements was undertaken. RESULTS A total of 76 RCT registrations, 32 RCT publications, and 11 press releases/advertisements were included. Approximately 72% of the RCT publications exhibited a high risk of bias due to selective outcome reporting. "Spin" was present in the results of the abstract (72%), abstract conclusion (81%), full-text results (44%), and full-text conclusion (84%). "Spin" appeared in 73% of press releases/advertisements due to the selective outcome reporting. CONCLUSION Functional food presentations in Japan frequently contained "spin." The Japanese government should more rigorously check whether food manufacturers report outcomes selectively.
Collapse
Affiliation(s)
- Hidehiro Someko
- Department of General Internal Medicine, Asahi General Hospital, I-1326, Asahi, Chiba, 289-2511, Japan; Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan.
| | - Norio Yamamoto
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan; Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Tatsuya Ito
- Department of Regulatory Science and Pharmaceutical Informatics, School of Pharmaceutical Sciences, Wakayama Medical University, Shichibancho 25-1, Wakayama, 640-8156, Japan
| | - Tomoharu Suzuki
- Department of Hospital Medicine, Urasoe General Hospital, Maeda 1-56-1, Urasoe, Okinawa, 901-2102, Japan
| | - Takahiro Tsuge
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan; Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan; Department of Rehabilitation, Kurashiki Medical Center, 250 Bakuro, Kurashiki, Okayama, 710-8522, Japan
| | - Hajime Yabuzaki
- Department of Neurological Surgery, Koga Community Hospital, Daikakuji 2-30-1, Yaizu, Shizuoka, 425-0088, Japan
| | - Eisuke Dohi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi-cho 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Yuki Kataoka
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan; Department of Internal Medicine, Kyoto Min-iren Asukai Hospital, Tanaka Asukai-cho 89, Kyoto, 606-8226, Japan; Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine, Shogoin Kawara-cho 54, Kyoto, 606-8507, Japan; Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Yoshida Konoe-cho, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Dugan D, Bell RJ, Brkljača R, Rix C, Urban S. A Review of the Ethnobotanical Use, Chemistry and Pharmacological Activities of Constituents Derived from the Plant Genus Geijera ( Rutaceae). Metabolites 2024; 14:81. [PMID: 38392973 PMCID: PMC11154539 DOI: 10.3390/metabo14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Geijera Schott is a plant genus of the Rutaceae Juss. (rue and citrus) family, comprising six species which are all native to Oceania. Of the plants belonging to this genus, the most significant species that has a customary use is Geijera parviflora, which was used by Indigenous Australians, primarily as a pain reliever. Herein, a comprehensive review of the literature published on the genus Geijera from 1930 to 2023 was conducted. This is the first review for this plant genus, and it highlights the chemical constituents reported to date, together with the range of pharmacological properties described from the various species and different parts of the plant. These properties include anti-inflammatory, anti-microbial, anti-parasitic, insect repellent, analgesic, neuroactive, and anti-cancer activities. Finally, a reflection on some of the important areas for future focused studies of this plant genus is provided.
Collapse
Affiliation(s)
- Deepika Dugan
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Rachael J. Bell
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Sylvia Urban
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| |
Collapse
|
3
|
Zhang B, Su D, Song Y, Li H, Chen C, Liao L, Zhang H, Luo J, Yang M, Zhu G, Ai Z. Yueju volatile oil plays an integral role in the antidepressant effect by up-regulating ERK/AKT-mediated GLT-1 expression to clear glutamate. Fitoterapia 2023; 169:105583. [PMID: 37336418 DOI: 10.1016/j.fitote.2023.105583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Phytochemical investigation of the volatile oil of Yueju (YJVO) and its constituent herbs induced the detection of 52 compounds in YJVO, mainly monoterpenes and sesquiterpenes as well as a small amount of aromatic and aliphatic compounds. 5 of these compounds were found only in the YJVO instead of the volatile oil of its constituent herbs. The anti-depressant effect of YJVO was proved by behavioral tests in chronic unpredictable mild stress (CUMS) mice. An acute oral toxicity evaluation determined the LD50 of YJVO was 5.780 mL/kg. Doppler ultrasound and laser speckle imaging have detected that the YJVO could improve depression-related cerebral blood flow. In addition, related neurotransmitters and proteins were analyzed through targeted metabolomics and immunofluorescence. The potential antidepressant mechanisms of YJVO related to significantly decreasing Glu in CUMS mice by up-regulating the ERK/AKT-mediated expression of GLT-1.
Collapse
Affiliation(s)
- Bike Zhang
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Dan Su
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Changlian Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Liangliang Liao
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Hongjie Zhang
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Jian Luo
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Feng M, Huo Q, Gan L, Chen Y, Xiao D, Guo X. Effects of Four Strains of Actinomycetes on the Content of Terpenoids in Baijiu. Foods 2023; 12:foods12071494. [PMID: 37048315 PMCID: PMC10094741 DOI: 10.3390/foods12071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Terpenoids not only are an important health factor in baijiu but also contribute to the elegance and finesse of baijiu, and actinomycetes act as an important source of terpenoids in baijiu. Four strains of actinomycetes—Streptomyces violascens (SPQ1), S. sampsonii (SPS1), S. thermophilus (SPG1), and S. griseus (SPH1)—obtained from the Daqu, pit mud, fermented grains and air, respectively, in the production of baijiu were used in solid-state and liquid fermentation with five brewing raw materials as the substrates. The terpenoids in the metabolites were analyzed and compared using gas chromatography-mass spectrometry (GC-MS). We found that the four strains of actinomycetes produced 31 terpenoids from the hydrolysates of five fermentation substrates during liquid fermentation, and the total terpenoid content was 989.94 μg/kg in the fermentation products. After 28 days of solid-state fermentation, the four actinomycete strains produced 64 terpenoids using the five fermentation substrates, and the total terpenoid content was 23,651.52 μg/kg in the fermentation products. The different fermentation substrates and fermentation methods have a great influence on the terpenoids produced by actinomycetes.
Collapse
Affiliation(s)
- Minxue Feng
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300547, China
| | - Qiaojuan Huo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300547, China
| | - Linyao Gan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300547, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300547, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300547, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300547, China
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin 644000, China
| |
Collapse
|
5
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Tshering G, Pimtong W, Plengsuriyakarn T, Na-Bangchang K. Effects of β-eudesmol and atractylodin on target genes and hormone related to cardiotoxicity, hepatotoxicity, and endocrine disruption in developing zebrafish embryos. Sci Prog 2022; 105:368504221137458. [PMID: 36474426 PMCID: PMC10306152 DOI: 10.1177/00368504221137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atractylodes lancea, commonly known as Kod-Kamao in Thai, a traditional medicinal herb, is being developed for clinical use in cholangiocarcinoma. β-eudesmol and atractylodin are the main active components of this herb which possess most of the pharmacological properties. However, the lack of adequate toxicity data would be a significant hindrance to their further development. The present study investigated the toxic effects of selected concentrations of β-eudesmol and atractylodin in the heart, liver, and endocrine systems of zebrafish embryos. Study endpoints included changes in the expression of genes related to Na/K-ATPase activity in the heart, fatty acid-binding protein 10a and cytochrome P450 family 1 subfamily A member 1 in the liver, and cortisol levels in the endocrine system. Both compounds produced inhibitory effects on the Na/K-ATPase gene expressions in the heart. Both also triggered the biomarkers of liver toxicity. While β-eudesmol did not alter the expression of the cytochrome P450 family 1 subfamily A member 1 gene, atractylodin at high concentrations upregulated the gene, suggesting its potential enzyme-inducing activity in this gene. β-eudesmol, but not atractylodin, showed some stress-reducing properties with suppression of cortisol production.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety
Research Team, National Nanotechnology Center, National Science and Technology
Development Agency, Klong Luang, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Drug Discovery and Development Center, Thammasat University, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
7
|
Wang L, Li R, Zhang Q, Liu J, Tao T, Zhang T, Wu C, Ren Q, Pu X, Peng W. Pyracantha fortuneana (Maxim.) Li: A comprehensive review of its phytochemistry, pharmacological properties, and product development. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.940900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pyracantha fortuneana (Maxim.) Li has been used as a herbal medicine in China in its long history. Since ancient times, the fruits of P. fortuneana has been considered a functional food to improve various diseases. Many bioactive substances, including proanthocyanidins, phenols, polysaccharides, and dietary fibers, have been isolated and identified from the P. fortuneana, which possess diverse biological properties both in vitro and in vivo. Although the researches on the P. fortuneana have achieved extensive progress, the systematic study of its biological activities is still relatively lacking. In addition, accumulating researches focus on the landscape value of the P. fortuneana and the development of its by-products. The by-products of P. fortuneana, which show good development potentials in the field of agricultural production and environmental protection, are important for improving the economic value of P. fortuneana and its significance. After extensive reviewing and analyzing the existing published articles, books, and patents, this study aims to a systematic and summarized research trends of P. fortuneana and its phytochemical compositions, nutritional values, pharmacological effects and health benefits of its extracts/monomers, which would be beneficial for the future development of this medicinal plant as functional food or drugs.
Collapse
|
8
|
Fukuda T, Ohnuma T, Obara K, Kondo S, Arai H, Ano Y. Supplementation with Matured Hop Bitter Acids Improves Cognitive Performance and Mood State in Healthy Older Adults with Subjective Cognitive Decline. J Alzheimers Dis 2021; 76:387-398. [PMID: 32474473 PMCID: PMC7369117 DOI: 10.3233/jad-200229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Prevention of age-related cognitive decline and depression is becoming urgent because of rapid growing aging populations. Effects of vagal nerve activation on brain function by food ingredients are inadequately investigated; matured hop bitter acid (MHBA) administration reportedly improves cognitive function and depression via vagal nerve activation in model mice. OBJECTIVE We investigated the effects of MHBA supplementation on cognitive function and mood state in healthy older adults with perceived subjective cognitive decline. METHODS Using a randomized double-blind placebo-controlled trial design, 100 subjects (aged 45-69 years) were randomly assigned into placebo (n = 50) and MHBA (n = 50) groups, and received placebo or MHBA capsules daily for 12 weeks. RESULTS Symbol Digit Modalities Test (SDMT) score assessing divided attention at week 12 was significantly higher (p = 0.045) and β-endorphin at week 12 was significantly lower (p = 0.043) in the subjects receiving MHBA. Transthyretin in serum, a putative mild cognitive impairment marker, was significantly higher at week 12 in the MHBA group than in the placebo group (p = 0.048). Subgroup analysis classified by the subjective cognitive decline questionnaire revealed that in addition to improved SDMT scores, memory retrieval assessed using the standard verbal paired-associate learning tests and the Ray Verbal Learning Test at week 12 had significantly improved in the subgroup with perceived subjective cognitive decline and without requirement for medical assistance in the MHBA group compared with that in the placebo group. CONCLUSION This study suggested that MHBA intake improves cognitive function, attention, and mood state in older adults.
Collapse
Affiliation(s)
- Takafumi Fukuda
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kuniaki Obara
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| | | | - Heii Arai
- Department of Psychiatry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yasuhisa Ano
- KIRIN Central Research Institute, Kirin Holdings Company, Ltd., Kanagawa, Japan
| |
Collapse
|
9
|
Acharya B, Chaijaroenkul W, Na-Bangchang K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem Biol Drug Des 2021; 97:984-996. [PMID: 33449412 DOI: 10.1111/cbdd.13823] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Herbal medicines are attracting the attention of researchers worldwide. β-Eudesmol is one of the most studied and major bioactive sesquiterpenes, mainly extracted from Atractylodes lancea (Thunb) DC. rhizomes. It has potential anti-tumor and anti-angiogenic activities and is an inhibitor of tumor growth by inhibiting angiogenesis by suppressing CREB activation of the growth factor signaling pathway. It also stimulates neurite outgrowth in rat pheochromocytoma cells with activation of mitogen-activated protein kinases. It may be a promising lead compound for enhancing neural function, and it may help to explain the underlying mechanisms of neural differentiation. In this review, we summarized the currently available clinical and preclinical studies describing the therapeutic applications of β-eudesmol.
Collapse
Affiliation(s)
- Bishwanath Acharya
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Drug discovery, and Development Center, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| |
Collapse
|