1
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
2
|
Zolotukhina EV, Butyrskaya EV, Fink-Straube C, Koch M, Silina YE. Towards controlled and simple design of non-enzymatic amperometric sensor for glycerol determination in yeast fermentation medium. Anal Bioanal Chem 2024; 416:3619-3630. [PMID: 38702446 PMCID: PMC11156751 DOI: 10.1007/s00216-024-05316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Glycerol is a widely used signaling bioanalyte in biotechnology. Glycerol can serve as a substrate or product of many metabolic processes in cells. Therefore, quantification of glycerol in fermentation samples with inexpensive, reliable, and rapid sensing systems is of great importance. In this work, an amperometric assay based on one-step designed electroplated functional Pd layers with controlled design was proposed for a rapid and selective measurement of glycerol in yeast fermentation medium. A novel assay utilizing electroplated Pd-sensing layers allows the quantification of glycerol in yeast fermentation medium in the presence of interfering species with RSD below 3% and recoveries ranged from 99 to 103%. The assay requires minimal sample preparation, viz. adjusting of sample pH to 12. The time taken to complete the electrochemical analysis was 3 min. Remarkably, during investigations, it was revealed that sensitivity and selectivity of glycerol determination on Pd sensors were significantly affected by its adsorption and did not depend on the surface structure of sensing layers. This study is expected to contribute to both fundamental and practical research fields related to a preliminary choice of functional sensing layers for specific biotechnology and life science applications in the future.
Collapse
Affiliation(s)
- E V Zolotukhina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - E V Butyrskaya
- Department of Chemistry, Voronezh State University, Voronezh, Russia
| | - C Fink-Straube
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - M Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Y E Silina
- Institute of Biochemistry, Saarland University, Campus B 2.2, Room 317, Saarbrücken, Germany.
| |
Collapse
|
3
|
Yu M, Shi Y, Gao Y, Luo Y, Jin Y, Liang X, Tao Z, Zhu G, Lin H, Li H, Qin J, Cao Z, Zhong M. Targeting AQP9 enhanced the anti-TNF therapy response in Crohn's disease by inhibiting LPA-hippo pathway. Pharmacol Res 2024; 203:107172. [PMID: 38583685 DOI: 10.1016/j.phrs.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1β⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.
Collapse
Affiliation(s)
- Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Shi
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yihua Jin
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoyi Liang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhuoran Tao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guojun Zhu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haiping Lin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Zhijun Cao
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases;Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
4
|
Hang M, Tse MCL, Pang BPS, Bi X, Jin F, Lee CW, Wong AOL, Chan CB. Differential regulation of hepatic SH3 domain binding kinase 1 (SBK1) expression in mouse and goldfish. Gen Comp Endocrinol 2023; 344:114372. [PMID: 37652166 DOI: 10.1016/j.ygcen.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
SH3 domain binding kinase 1 (SBK1) is a serine/threonine kinase that belongs to the new kinase family (NFK) with limited information on its function. Previous studies reported that SBK1 plays a role in memory formation, lipid metabolism, and cancer cell progression. Nevertheless, the regulatory mechanism of Sbk1 expression in various tissues remains unknown. We report here that Sbk1 expression in mouse hepatocytes was downregulated by glucocorticoid, whereas saturated and unsaturated fatty acids were stimulators of Sbk1 expression. The regulatory role of glucocorticoid and fatty acid was further confirmed by the Sbk1 promoter assay, which aligned with the presence of several glucocorticoid-response elements (GRE) and peroxisome proliferator responsive elements (PPRE) in the mouse Sbk1 promoter. The inhibitory effect of glucocorticoids on hepatic Sbk1 expression and protein content could also be demonstrated in vivo after prednisolone injection. Moreover, the expression of SBK1 in goldfish (gfSBK1) was also sensitive to glucocorticoid suppression as their mouse orthologues. In contrast, insulin had a differential action on SBK1 expression that it promoted the expression of all SBK1 isoforms in the goldfish hepatocytes but inhibited Sbk1 expression in the mouse hepatocytes. Together, our findings indicate that SBK1 expression is hormone- and nutrient-sensitive with a species-specific response.
Collapse
Affiliation(s)
- Miaojia Hang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fanming Jin
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Anderson O L Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Insulin sensitivity is associated with the observed variation of de novo lipid synthesis and body composition in finishing pigs. Sci Rep 2022; 12:14586. [PMID: 36028540 PMCID: PMC9418310 DOI: 10.1038/s41598-022-18799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
Variations in body composition among pigs can be associated with insulin sensitivity given the insulin anabolic effect. The study objectives were to characterize this association and to compare de novo lipogenesis and the gene expression in the adipose tissue of pigs of the same genetic background. Thirty 30-95 kg of body weight (BW) pigs, catheterized in the jugular vein participated into an oral glucose tolerance test (OGTT; 1.75 g glucose/kg of BW) to calculate insulin-related indexes. The 8 fattest and the 8 leanest pigs were used to determine the relative mRNA abundance of studied genes. The rate of lipogenesis was assessed by incorporation of [U-13C]glucose into lipids. The QUICKI and Matsuda indexes negatively correlated with total body lipids (r = - 0.67 and r = - 0.59; P < 0.01) and de novo lipogenesis (r = - 0.58; P < 0.01). Fat pigs had a higher expression level of lipogenic enzymes (ACACA, ACLY; P < 0.05) than lean pigs. The reduced insulin sensitivity in fat pigs was associated with a higher expression level of glucose-6-phosphate dehydrogenase (G6PD) and a lower expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ). In conclusion, pigs with increased body lipids have lower insulin sensitivity which is associated with increased de novo lipogenesis.
Collapse
|
6
|
Abstract
Metabolic disorders related to obesity are largely dependent on adipose tissue hypertrophy, which involves adipocyte hypertrophy and increased adipogenesis. Adiposize is regulated by lipid accumulation as a result of increased lipogenesis (mainly lipid uptake in mature adipocytes) and reduced lipolysis. Using realtime 2D cell culture analyses of lipid uptake, we show (1) that high glucose concentration (4.5 g/L) was required to accumulate oleic acid increasing lipid droplet size until unilocularization similar to mature adipocytes in few days, (2) oleic acid reduced Peroxisome-Proliferator Activated Receptor Gamma (PPARG) gene transcription and (3) insulin counteracted oleic acid-induced increase of lipid droplet size. Although the lipolytic activity observed in high versus low glucose (1 g/L) conditions was not altered, insulin was found to inhibit oleic acid induced gene transcription required for lipid storage such as Cell Death Inducing DFFA Like Effectors (CIDEC) and G0S2 (G0 switch gene S2), possibly through PPARA activity. Although this signalling pathway requires more detailed investigation, the results point out the differential mechanisms involved in the pro-adipogenic effect of insulin in absence versus its protective effect on adiposity in presence of oleic acid uptake. Abbreviations: AICAR, 5-Aminoimidazole-4-carboxamide-1-D-ribofuranoside; AMPK, AMP-Activated protein kinase, ASCs, adipose stem cell; ATGL, adipose triglyceride lipase; BSA, Bovine serum albumin; CEBPA, CCAAT enhancer binding protein alpha; CIDEs, Cell Death Inducing DFFA Like Effectors; dA, differentiated adipocyte; DMEM, Dulbecco’s Modified Eagle’s Medium; FABPs, Fatty Acid Binding Proteins; FAT/CD36, Fatty acid translocase; FCS, Foetal calf serum; FN1, fibronectin 1; FFA, free fatty acid; G0S2, G0 switch gene S2; GLUTs, Glucose transporters; GPR120, G protein-coupled receptor 120; HG, high glucose; HSL, hormone sensitive lipase; INSR, insulin receptor; LG, low glucose; OA, oleic acid; PBS, Phosphate buffer saline; PPARs, Peroxisome-Proliferator Activated Receptors; PKA, Protein kinase cyclic AMP-dependent; PKG, Protein kinase cyclic GMP dependent; PTGS2, cytochrome oxidase 2; RTCA, realtime cell analysis; TG, triglyceride.
Collapse
Affiliation(s)
- Emmanuelle Berger
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, 69622 Villeurbanne ou 69363 Lyon, France
| | - Alain Géloën
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, 69622 Villeurbanne ou 69363 Lyon, France
| |
Collapse
|
7
|
High doses of tyramine stimulate glucose transport in human fat cells. J Physiol Biochem 2022; 78:543-556. [DOI: 10.1007/s13105-021-00864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
|
8
|
Abstract
Osteoarthritis (OA) is considered the most frequent degenerative disease and is characterized by cartilage degradation and synovial inflammation. Fibroblast-like synoviocytes (FLSs) are vital to synovial inflammation in OA. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and hyperinsulinemia (HINS) and has been demonstrated to be an independent risk factor for OA. Autophagy is involved in the processes of various inflammatory diseases, and autophagy inhibition can stimulate OA development. Thus, we aimed to investigate the role of insulin in the inflammatory phenotype and autophagy of FLSs in OA. The data showed that cell viability and proinflammatory cytokine production in FLSs were both increased after insulin stimulation. We also found that high insulin could promote macrophage infiltration and chemokine production but inhibited autophagy in FLSs. To further explore the potential mechanisms, the effects of insulin on PI3K/Akt/mTOR and NF-ĸB signaling activation were evaluated. The results indicated that insulin activated PI3K/Akt/mTOR/NF-ĸB signaling, and the above-mentioned inflammatory responses, including autophagy inhibition, were notably attenuated by specific signaling inhibitors in the presence of high insulin. Moreover, the data showed that a positive feedback loop existed between proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) and PI3K/mTOR/Akt/NF-ĸB signaling in FLSs, and insulin enhanced this feedback loop to accelerate OA progression. Our study suggests that insulin may be a novel therapeutic strategy for OA prevention and treatment in the future.
Collapse
Affiliation(s)
- Li Qiao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
9
|
Possik E, Al-Mass A, Peyot ML, Ahmad R, Al-Mulla F, Madiraju SRM, Prentki M. New Mammalian Glycerol-3-Phosphate Phosphatase: Role in β-Cell, Liver and Adipocyte Metabolism. Front Endocrinol (Lausanne) 2021; 12:706607. [PMID: 34326816 PMCID: PMC8313997 DOI: 10.3389/fendo.2021.706607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
Cardiometabolic diseases, including type 2 diabetes, obesity and non-alcoholic fatty liver disease, have enormous impact on modern societies worldwide. Excess nutritional burden and nutri-stress together with sedentary lifestyles lead to these diseases. Deranged glucose, fat, and energy metabolism is at the center of nutri-stress, and glycolysis-derived glycerol-3-phosphate (Gro3P) is at the crossroads of these metabolic pathways. Cellular levels of Gro3P can be controlled by its synthesis, utilization or hydrolysis. The belief that mammalian cells do not possess an enzyme that hydrolyzes Gro3P, as in lower organisms and plants, is challenged by our recent work showing the presence of a Gro3P phosphatase (G3PP) in mammalian cells. A previously described phosphoglycolate phosphatase (PGP) in mammalian cells, with no established physiological function, has been shown to actually function as G3PP, under physiological conditions, particularly at elevated glucose levels. In the present review, we summarize evidence that supports the view that G3PP plays an important role in the regulation of gluconeogenesis and fat storage in hepatocytes, glucose stimulated insulin secretion and nutri-stress in β-cells, and lipogenesis in adipocytes. We provide a balanced perspective on the pathophysiological significance of G3PP in mammals with specific reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- Elite Possik
- Departments of Nutrition, Biochemistry and Molecular Medicine, and Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Anfal Al-Mass
- Departments of Nutrition, Biochemistry and Molecular Medicine, and Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, and Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, and Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
- *Correspondence: Marc Prentki, ; S. R. Murthy Madiraju,
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, and Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
- *Correspondence: Marc Prentki, ; S. R. Murthy Madiraju,
| |
Collapse
|