1
|
De Lellis LF, Morone MV, Buccato DG, Cordara M, Larsen DS, Ullah H, Piccinocchi R, Piccinocchi G, Balaji P, Baldi A, Di Minno A, El-Seedi HR, Sacchi R, Daglia M. Efficacy of Food Supplement Based on Monacolins, γ-Oryzanol, and γ-Aminobutyric Acid in Mild Dyslipidemia: A Randomized, Double-Blind, Parallel-Armed, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:2983. [PMID: 39275298 PMCID: PMC11397197 DOI: 10.3390/nu16172983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
The risk of cardiovascular disease (CVD) is approximately doubled in subjects with hypercholesterolemia compared to those with normal blood cholesterol levels. Monacolin K (MK), the main active substance in rice fermented by the Monascus purpureus, acts on cholesterol metabolism. Rice also contains other bioactive compounds such as γ-oryzanol (OZ) and γ-aminobutyric acid (GABA). In a randomized, placebo-controlled, double-blind trial, the efficacy and tolerability of a food supplement (FS) based on an ingredient standardized to contain monacolins (4.5%), OZ, and GABA were evaluated in subjects with mild dyslipidemia. For the duration of the trial, enrolled subjects (n = 44, each group) received the FS or placebo and were instructed to use an isocaloric diet. Compared to the placebo group, after a 3 months of the FS, the mean low-density lipoprotein cholesterol and mean TC values were reduced by 19.3 and 8.3%, respectively, while the mean high-density lipoprotein cholesterol value increased by 29.3%. On average, the subjects shifted from very high to moderate CVD risk. Glucose metabolism and hepatic and renal parameters did not change after the treatment and no adverse events were reported. Guidelines to handle hypercholesterolemia with food supplements in specific clinical settings are needed to better manage mild dyslipidemia.
Collapse
Affiliation(s)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Marcello Cordara
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
| | - Danaè S Larsen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Hammad Ullah
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Roberto Piccinocchi
- Level 1 Medical Director Anaesthesia and Resuscitation A. U. O. Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 80138 Naples, Italy
| | - Gaetano Piccinocchi
- Comegen S.c.S., Società Cooperativa Sociale di Medici di Medicina Generale, Viale Maria Bakunin 41, 80125 Naples, Italy
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, TN, India
| | - Alessandra Baldi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Hyun YJ, Park SY, Kim JY. The effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal tract in vitro and in vivo. Food Sci Biotechnol 2023; 32:371-379. [PMID: 36778085 PMCID: PMC9905455 DOI: 10.1007/s10068-022-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to evaluate the effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal (GI) tract. Samples were prepared by extracting rice germ fermented with Lactobacillus plantarum with 30% ethanol (RG_30E) or 50% ethanol (RG_50E). Ferulic acid was determined as the active component in the samples. RG_30E significantly inhibited glucose uptake and mRNA expression of GLUT2 and SGLT1 to a larger extent than RG_50E in Caco-2 cells. A single oral administration was performed on C57BL/6 mice to confirm which substrate (glucose, sucrose, or maltose) the sample inhibited absorption of, improving postprandial blood glucose elevation. As a result, RG_30E resulted in significantly lower blood glucose levels and AUC after glucose and sucrose administration. Therefore, fermented rice germ extracted with 30% ethanol regulates glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia in the GI tract. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01198-6.
Collapse
Affiliation(s)
- Ye Ji Hyun
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
3
|
Oliveira MEAS, Coimbra PPS, Galdeano MC, Carvalho CWP, Takeiti CY. How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Liu CS, Chen L, Hu YN, Dai JL, Ma B, Tang QF, Tan XM. Self-Microemulsifying Drug Delivery System for Improved Oral Delivery and Hypnotic Efficacy of Ferulic Acid. Int J Nanomedicine 2020; 15:2059-2070. [PMID: 32273702 PMCID: PMC7104137 DOI: 10.2147/ijn.s240449] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/10/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Ferulic acid (FA) is a natural compound which is used to treat insomnia. However, its use is limited because of its poor oral bioavailability caused by extremely rapid elimination. The current study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral delivery of FA and to enhance its hypnotic efficacy. Methods FA-SMEDDS was prepared, and its morphology and storage stability were characterized. The formulation was also subjected to pharmacokinetic and tissue distribution studies in rats. The hypnotic efficacy of FA-SMEDDS was evaluated in p-chlorophenylalanine-induced insomnia mice. Results FA-loaded SMEDDS exhibited a small droplet size (15.24 nm) and good stability. Oral administration of FA-SMEDDS yielded relative bioavailability of 185.96%. In the kidney, SMEDDS decreased the distribution percentage of FA from 76.1% to 59.4% and significantly reduced its metabolic conversion, indicating a reduction in renal elimination. Interestingly, FA-SMEDDS showed a higher distribution in the brain and enhanced serotonin levels in the brain, which extended the sleep time by 2-fold in insomnia mice. Conclusion This is the first study to show that FA-loaded SMEDDS decreased renal elimination, enhanced oral bioavailability, increased brain distribution, and improved hypnotic efficacy. Thus, we have demonstrated that SMEDDS is a promising carrier which can be employed to improve the oral delivery of FA and facilitate product development for the therapy of insomnia.
Collapse
Affiliation(s)
- Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Li Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Yan-Nan Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jin-Lian Dai
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Biao Ma
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Qing-Fa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, People's Republic of China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
5
|
Definitive evidence of the presence of 24-methylenecycloartanyl ferulate and 24-methylenecycloartanyl caffeate in barley. Sci Rep 2019; 9:12572. [PMID: 31467350 PMCID: PMC6715696 DOI: 10.1038/s41598-019-48985-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
γ-Oryzanol (OZ), which has a lot of beneficial effects, is a mixture of ferulic acid esters of triterpene alcohols (i.e., triterpene alcohol type of OZ (TTA-OZ)) and ferulic acid esters of plant sterols (i.e., plant sterol type of OZ (PS-OZ)). Although it has been reported that OZ is found in several kinds of cereal typified by rice, TTA-OZ (e.g., 24-methylenecycloartanyl ferulate (24MCA-FA)) has been believed to be characteristic to rice and has not been found in other cereals. In this study, we isolated a compound considered as a TTA-OZ (i.e., 24MCA-FA) from barley and determined the chemical structure using by HPLC-UV-MS, high-resolution MS, and NMR. Based on these results, we proved for the first time that barley certainly contains 24MCA-FA (i.e., TTA-OZ). During the isolation and purification of 24MCA-FA from barley, we found the prospect that a compound with similar properties to OZ (compound-X) might exist. To confirm this finding, the compound-X was also isolated, determined the chemical structure, and identified as a caffeic acid ester of 24-methylenecycloartanol (24MCA-CA), which has rarely been reported before. We also quantified these compounds in various species of barley cultivars and found for the first time the existence of 24MCA-FA and 24MCA-CA in various barley. Through these findings, it opens the possibility to use barley as a new source of 24MCA-FA and 24MCA-CA.
Collapse
|