1
|
Solarczyk P, Slósarz J, Gołębiewski M, Natalello A, Musati M, Luciano G, Priolo A, Puppel K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients 2024; 16:3634. [PMID: 39519466 PMCID: PMC11547650 DOI: 10.3390/nu16213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES In this study, the differences in protein and fat bioactive components between the milk from purebred Polish Holstein Friesian (PHF) cows and PHF cows crossbred with Swedish Red (SRB) were investigated. The objective was to assess the impact of genetic variation on the nutritional quality of their milk. METHODS This study was conducted at the Warsaw University of Life Sciences' (WULS) experimental dairy farm in Warsaw, Poland, and involved 60 primiparous cows divided into two groups: 30 PHF×SRB crossbred cows and 30 purebred PHF cows. All cows were housed in a free-stall system with an average lactation yield exceeding 10,000 kg/lactation. The milk composition analyses included total protein, casein, whey protein, fatty acid profiles, and vitamin content. RESULTS Milk from the PHF×SRB hybrids showed a significantly greater total protein content (3.53%) compared to that from the purebred PHF cows (3.28%). The casein content was higher in the hybrids' milk (2.90%) than the purebreds' milk (2.78%), while the whey protein levels were lower in the purebred milk (0.50%) than in the hybrid milk (0.63%). The hybrids exhibited higher concentrations of certain saturated fatty acids in their milk, while the purebreds' milk contained greater amounts of beneficial unsaturated fatty acids and fat-soluble vitamins-E, D, and K. CONCLUSIONS These results indicate that genetic selection through crossbreeding can enhance the nutritional quality of milk. The differences observed in protein, fatty-acid, and vitamin content underscore the role of the genotype in milk composition, suggesting that breeding strategies can optimize dairy products' health benefits.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Luciano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Ahmed S, Liu G, Sadiq A, Yang H, Yongbin L, Farooq U, Yi D, Yiyu S, Xiaodong W, Ahmed M, Jiang X. Synergistic Effect of Maternal Micronutrient Supplementation on ORFV DNA Vaccine Immune Response in a Pregnant Model. Biol Trace Elem Res 2024:10.1007/s12011-024-04263-9. [PMID: 38874865 DOI: 10.1007/s12011-024-04263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Contagious ecthyma is a contagious zoonotic disease caused by the Orf virus that can infect farm animals and humans, but no vaccine is available for pregnant mothers. Excessive oxidative stress during pregnancy can suppress the vaccine immune response in pregnant mothers; hence, maternal micronutrient supplementation could effectively improve the immune response, health, and oxidative status during pregnancy. In this study, we employed an 8-week-old pregnant rat model to receive a single intramuscular dose of 200 µg of ORF DNA vaccine with or without vitamin E and selenium supplementation to evaluate their effect on immune responses (specific IgG and IgG isotypes), oxidative stress, liver enzymes, and blood glucose levels in maternal-neonatal serum and milk secretions. Additionally, antioxidant-related gene expressions were analyzed in the maternal placenta and pups' liver. The results showed that supplementation of vitamin E and selenium with ORF DNA vaccination increased the production of specific antibody and IgG isotypes (IgG1 and IgG2a) and reduced the oxidative stress in neonatal-maternal serum and milk compared to both the control group and those vaccinated without supplementation (p < 0.05). Notably, the ORF DNA vaccine did not cause oxidative stress and hepatic damage. However, combined supplementation of vitamin E and selenium with DNA vaccination significantly decreased serum malondialdehyde (MDA) levels and improved the antioxidant-related enzyme activities of glutathione peroxidase (GPX), superoxide dismutase 1 (SOD1), and selenoprotein P (SELP) in the maternal placenta and liver of pups (p < 0.05). In conclusion, maternal supplementation of vitamin E and selenium enhanced the immune responses of the ORF DNA vaccine by mitigating oxidative stress in pregnant rats and could thus be a promising strategy for better health outcomes for both mothers and neonates.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Liu Yongbin
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wang Xiaodong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mehboob Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Hachemi MA, Sexton JR, Briens M, Whitehouse NL. Efficacy of feeding hydroxy-selenomethionine on plasma and milk selenium in mid-lactation dairy cows. J Dairy Sci 2023; 106:2374-2385. [PMID: 36894429 DOI: 10.3168/jds.2022-22323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/12/2022] [Indexed: 03/09/2023]
Abstract
In this study, we aimed to determine the amount of Se transferred to milk and blood of mid- to late-lactation dairy cows when supplemental Se from hydroxy-selenomethionine (OH-SeMet) was fed compared with an unsupplemented group and a group supplemented with a seleno-yeast (SY). Twenty-four lactating Holstein cows (178 ± 43 d in milk) were used in a complete randomized block design for 91 d (7-d covariate period and 84-d treatment period). Treatments were (1) basal diet with an analyzed Se background of 0.2 mg of Se per kg as-fed (control); (2) basal diet + 0.3 mg of Se/kg as-fed from SY (SY-0.3); (3) basal diet + 0.1 mg of Se/kg as-fed from OH-SeMet (OH-SeMet-0.1); and (4) basal diet + 0.3 mg of Se/kg as-fed from OH-SeMet (OH-SeMet-0.3). During the trial, plasma and milk were analyzed for total Se, and plasma was analyzed for glutathione peroxidase activity. The mean plasma and milk Se concentrations exhibited the same relationship, where OH-SeMet-0.3 resulted in the highest values (142 µg/L of plasma and 104 µg/kg of milk), followed by SY-0.3 (134 µg/L and 85 µg/kg), OH-SeMet-0.1 (122 µg/L and 67 µg/kg), and the control group had the lowest values (120 µg/L and 50 µg/kg). The increment of Se in milk induced by OH-SeMet-0.3 (+54 µg/kg) was 54% higher than that induced by SY-0.3 (+35 µg/kg). Additionally, dietary supplementation of 0.2 mg/kg Se from OH-SeMet in the total mixed ration was estimated to be similar to 0.3 mg/kg Se from SY in the total mixed ration when considering the level of Se in the milk. There was no difference in plasma glutathione peroxidase activity between groups; however, OH-SeMet-0.3 significantly decreased somatic cell count. The results confirmed that supplementation with organic Se increases milk and plasma Se concentrations. Moreover, when administered at the same level of supplementation, OH-SeMet was shown to be more efficient than SY in improving milk quality by increasing Se content and decreasing milk somatic cell count.
Collapse
Affiliation(s)
- Mohammed A Hachemi
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160 Antony, France.
| | - Jessica R Sexton
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 038224
| | - Mickael Briens
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160 Antony, France
| | - Nancy L Whitehouse
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 038224
| |
Collapse
|
4
|
Schaffer S, Rimbach G, Pieper D, Hommen N, Fischer A, Birringer M, Seidel U. Minerals and Trace Elements in 990 Beverages and Their Contribution to Dietary Reference Values for German Consumers. Nutrients 2022; 14:4899. [PMID: 36432585 PMCID: PMC9697264 DOI: 10.3390/nu14224899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Beverages are an integral part of human nutrition, yet little is known about their contribution to daily intakes of minerals and trace elements in German consumers. Using inductively coupled plasma-mass spectrometry, we determined the concentration of five minerals and six trace elements in beverage samples (n = 990, assigned to different beverage groups) collected throughout Germany. For a calculation of their relative contribution to the mineral supply, available beverage consumption data was combined with our quantitative analysis to calculate the average contribution of beverage groups to meet the respective dietary reference values currently used in Germany, Austria and Switzerland (D-A-CH region). Based on their presence in beverages and their consumption, the top three minerals are phosphorous, calcium and magnesium, and they, therefore, may reasonably contribute to the reference values. Among the trace elements, beverages mostly contributed to the manganese supply, whereas at the same time, concentrations of iron, cobalt and copper were low across all tested groups. Our study provides an overview of the assumed mineral and trace element intake via beverages in Germany and may, thus, serve as a foundation for a mineral and trace element database of beverages that needs to be expanded in the future.
Collapse
Affiliation(s)
- Sebastian Schaffer
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - David Pieper
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Niklas Hommen
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Alexandra Fischer
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, University of Applied Sciences Fulda, 36037 Fulda, Germany
| | - Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
5
|
Inclusion of Sunflower Oil, Organic Selenium, and Vitamin E on Milk Production and Composition, and Blood Parameters of Lactating Cows. Animals (Basel) 2022; 12:ani12151968. [PMID: 35953958 PMCID: PMC9367271 DOI: 10.3390/ani12151968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Feeding sunflower oil, selenium, and vitamin E to lactating dairy cows has improved the nutritional profile of milk for human consumption and positively impacted animal performance. This may be attributed to the increased healthier fat components, i.e., “good fats”, and antioxidant substances in milk. This study evaluated the effects of supplementing sunflower oil, selenium, and vitamin E on milk production and composition, and the blood parameters of lactating dairy cows. Supplementing sunflower oil to lactating dairy cows provided beneficial effects on milk fatty acid profiles, increasing healthier fatty acids concentrations, which have been reported as important anticarcinogenic, antiatherogenic, and antidiabetic nutrients in human diet. However, this strategy reduced the milk fat content. Selenium and vitamin E supplementation improved milk production and provided higher selenium and vitamin E content in blood and milk. These compounds are important antioxidants and nutrients for animal and human health. Abstract Aiming to improve milk quality and animal health, the effects of the inclusion of sunflower oil with added organic selenium (Se) and vitamin E in the diets of lactating cows were evaluated. Twenty-four multiparous lactating Jersey cows were randomly enrolled into four treatments: CON (control); SEL [2.5 mg organic Se kg−1 dry matter (DM) + 1000 IU vitamin E daily]; SUN (sunflower oil 3% DM); and SEL + SUN (sunflower oil 3% DM + 2.5 mg organic Se kg−1 DM + 1000 IU vitamin E daily). The experimental period was 12 weeks with 14 days for acclimation. Cows were milked twice a day. Dry matter intake, milk production, and composition were measured daily and analyzed in a pooled 4-week sample. On day 84, white blood cell counts, as well as serum and milk Se and vitamin E levels, were assessed. Supplementation with selenium and vitamin E alone or combined with sunflower oil increased milk production, and increased the serum and milk concentrations of those nutrients. The inclusion of sunflower oil reduced fat content and DM intake but also altered the milk fatty acid profile, mainly increasing levels of trans 11 C18:1 (vaccenic) and cis 9 trans 11 conjugated linoleic acid (CLA). Our results indicate that supplementation with sunflower oil, Se and vitamin E provides beneficial effects on animal performance and milk composition, which could be an important source of CLA and antioxidants (Se and vitamin E) for human consumption.
Collapse
|
6
|
Barcelos B, Gomes V, Vidal AMC, de Freitas Júnior JE, de Araújo MLGML, Alba HDR, Netto AS. Effect of selenium and vitamin E supplementation on the metabolic status of dairy goats and respective goat kids in the peripartum period. Trop Anim Health Prod 2022; 54:36. [PMID: 34988774 DOI: 10.1007/s11250-021-03034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
This study aimed to examine the effects of selenium (Se) and vitamin E (vitE) supplementation on blood cell counts and blood metabolite concentrations in goats and their kids. Fifteen Saanen goats (average age 6 years of age; average initial body weight of 70 ± 10 kg) and 21 ½ Saanen × ½ Pardo Alpine crossbred goat kids (average body weight of 3.70 ± 0.64 kg) were used. Animals were distributed in a completely randomized design with five replicates per diet for mother goats and seven for goat kids and randomly assigned into three groups in the following diets: CON, control basal diet; Se, inclusion of 3.2 mg of Se/kg DM; SevitE, inclusion of 3.2 mg Se/kg DM and 1145 IU/day vitE/kg DM. Effects of time were observed on red blood cells, hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin in goats and goat kids. Effects of time were observed on differential counts of leucocytes, lymphocytes, and monocytes in goat kids. Interaction was observed for high-density lipoprotein and total protein in goats and for triglycerides, beta-hydroxybutyrate (BHBA), and gamma-glutamyltransferase (GGT) in goat kids. Effects of time were observed on low-density lipoprotein, triglycerides, glucose, lactate, BHBA, non-esterified fatty acids (NEFA), creatinine, aspartate-aminotransferase, and GGT in goats and all blood metabolites in goat kids. Selenium, vitE, or association in the evaluated levels are not sufficient to change blood cell counts when supplied in diets for goats or goat kids. However, the effect of time or interaction between time and diets change the blood metabolite concentrations in the animals.
Collapse
Affiliation(s)
- Brenda Barcelos
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, 13.635-900, Pirassununga, SP, Brazil
| | - Viviani Gomes
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, 13.635-900, Pirassununga, SP, Brazil
| | - Ana Maria Centola Vidal
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, 13.635-900, Pirassununga, SP, Brazil
| | - José Esler de Freitas Júnior
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia, 40.170-010, Salvador, BA, Brazil.
| | | | - Henry Daniel Ruiz Alba
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia, 40.170-010, Salvador, BA, Brazil
| | - Arlindo Saran Netto
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, 13.635-900, Pirassununga, SP, Brazil
| |
Collapse
|
7
|
Corrêa LB, Saran Netto A, Cônsolo NRB, Garrine CMLP, Yoshikawa CYC, da Cunha JA, da Silva JS, Silva SL, Zanetti MA. Effects of canola oil and antioxidants on performance, serum parameters, carcass traits, and rumen fermentation patterns of Nellore cattle. Animal 2021; 15:100217. [PMID: 34051433 DOI: 10.1016/j.animal.2021.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022] Open
Abstract
Several nutritional strategies have been used in beef cattle production in order to increase animal performance and profitability. However, in the past two decades, the increase of consumer preference for functional foods has driven the investigation for improving food via adding functional substances to animal diets. We evaluated the effect of canola oil supplementation associated with vitamin E and selenium on performance, rumen metabolism, carcass traits, meat tenderness, and serum, liver, and meat status of antioxidants in finishing Nellore males. Animals were fed for 106 days in a feedlot and were randomly distributed in a 2 × 2 factorial arrangement: two levels of oil in the diet (no inclusion and 3% canola oil, defined as diet without oil inclusion (NO) and effect of oil (OIL), respectively) and two levels of antioxidants in the diet (no inclusion and 2.5 mg of Se/kg of DM + 500 UI of vitamin E/kg of DM, defined as diet without antioxidant inclusion (NA) and effect of the antioxidants (ANT), respectively). DM intake (kg/day) was evaluated daily; performance and serum were analysed at the beginning of the feedlot and every 28 days. Animals were slaughtered and hot carcass weight (kg) was recorded; ruminal fluid and liver samples were collected. At 24 h postmortem, carcass pH was recorded and the Longissimus thoracis was sampled. There was no significant effect of the OIL*ANT interaction (P > 0.05) for any trait evaluated. Bulls fed OIL presented greater final BW (P < 0.01), average daily gain (kg/day; P < 0.01), feed efficiency (P < 0.01), rump fat thickness (P8RF; P < 0.05), and greater tenderness; the ANT diet increased P8RF (P < 0.05). The levels of selenium and vitamin E in serum, liver, and meat were increased (P < 0.01) with the inclusion of ANT. ANT did not change triiodothyronine (T3, ng/mL) and thyroxine (T4, µg/gL) serum concentrations but decreased serum glucose levels. The treatments did not affect (P > 0.05) ruminal parameters or the protozoa population. Our results showed that the inclusion of 3% canola oil in the diet DM increased performance, feed efficiency, carcass fat deposition, and tenderness, with no effect on rumen fermentation and protozoa population of Nellore cattle in a feedlot system. The inclusion of ANT in the cattle diet did not affect performance or rumen parameters. However, the levels of ANT were increased in the serum, liver, and meat, enriching the final product with these compounds.
Collapse
Affiliation(s)
- L B Corrêa
- Department of Animal Sciences, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - A Saran Netto
- Department of Animal Sciences, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil.
| | - N R B Cônsolo
- Department of Animal Sciences, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - C M L P Garrine
- College of Veterinary Medicine Eduardo Mondlane University, Julius Nyerere 3453, Maputo, Mozambique
| | - C Y C Yoshikawa
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil
| | - J A da Cunha
- Department of Animal Sciences, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - J S da Silva
- Department of Animal Sciences, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - S L Silva
- Department of Animal Sciences, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - M A Zanetti
- Department of Animal Sciences, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil
| |
Collapse
|
8
|
Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals (Basel) 2019; 9:E462. [PMID: 31331084 PMCID: PMC6680431 DOI: 10.3390/ani9070462] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In commercial animals production, productive stress can negatively impact health status and subsequent productive and reproductive performance. A great body of evidence has demonstrated that as a consequence of productive stress, an overproduction of free radicals, disturbance of redox balance/signaling, and oxidative stress were observed. There is a range of antioxidants that can be supplied with animal feed to help build and maintain the antioxidant defense system of the body responsible for prevention of the damaging effects of free radicals and the toxic products of their metabolism. Among feed-derived antioxidants, selenium (Se) was shown to have a special place as an essential part of 25 selenoproteins identified in animals. There is a comprehensive body of research in monogastric species that clearly shows that Se bioavailability within the diet is very much dependent on the form of the element used. Organic Se, in the form of selenomethionine (SeMet), has been reported to be a much more effective Se source when compared with mineral forms such as sodium selenite or selenate. It has been proposed that one of the main advantages of organic Se in pig and poultry nutrition is the non-specific incorporation of SeMet into general body proteins, thus forming an endogenous Se reserve that can be utilized during periods of stress for additional synthesis of selenoproteins. Responses in ruminant species to supplementary Se tend to be much more variable than those reported in monogastric species, and much of this variability may be a consequence of the different fates of Se forms in the rumen following ingestion. It is likely that the reducing conditions found in the rumen are responsible for the markedly lower assimilation of inorganic forms of Se, thus predisposing selenite-fed animals to potential Se inadequacy that may in turn compromise animal health and production. A growing body of evidence demonstrates that organic Se has a number of benefits, particularly in dairy and beef animals; these include improved Se and antioxidant status and better Se transfer via the placenta, colostrum, and milk to the newborn. However, there is a paucity in the data concerning molecular mechanisms of SeMet assimilation, metabolism and selenoprotein synthesis regulation in ruminant animals, and as such, further investigation is required.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia.
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Godollo, Hungary.
| | - Ivan I Kochish
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, 141311 Sergiev Posad, Russia
| | - Darren T Juniper
- Animal, Dairy, Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| |
Collapse
|