1
|
Kabisch S, Hajir J, Sukhobaevskaia V, Weickert MO, Pfeiffer AFH. Impact of Dietary Fiber on Inflammation in Humans. Int J Mol Sci 2025; 26:2000. [PMID: 40076626 PMCID: PMC11900212 DOI: 10.3390/ijms26052000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Cohort studies consistently show that a high intake of cereal fiber and whole-grain products is associated with a decreased risk of type 2 diabetes (T2DM), cancer, and cardiovascular diseases. Similar findings are also reported for infectious and chronic inflammatory disorders. All these disorders are at least partially caused by inflammaging, a chronic state of inflammation associated with aging and Metabolic Syndrome. Surprisingly, insoluble (cereal) fiber intake consistently shows stronger protective associations with most long-term health outcomes than soluble fiber. Most humans consume soluble fiber mainly from sweet fruits, which usually come with high levels of sugar, counteracting the potentially beneficial effects of fiber. In both observational and interventional studies, high-fiber diets show a beneficial impact on inflammation, which can be attributed to a variety of nutrients apart from dietary fiber. These confounders need to be considered when evaluating the effects of fiber as part of complex dietary patterns. When assessing specific types of fiber, inulin and resistant starch clearly elicit anti-inflammatory short-term effects, while results for pectins, beta-glucans, or psyllium turn out to be less convincing. For insoluble fiber, promising but sparse data have been published so far. Hypotheses on putative mechanisms of anti-inflammatory fiber effects include a direct impact on immune cells (e.g., for pectin), fermentation to pleiotropic short-chain fatty acids (for fermentable fiber only), modulation of the gut microbiome towards higher levels of diversity, changes in bile acid metabolism, a differential release of gut hormones (such as the glucose-dependent insulinotropic peptide (GIP)), and an improvement of insulin resistance via the mTOR/S6K1 signaling cascade. Moreover, the contribution of phytate-mediated antioxidative and immune-modulatory means of action needs to be considered. In this review, we summarize the present knowledge on the impact of fiber-rich diets and dietary fiber on the human inflammatory system. However, given the huge heterogeneity of study designs, cohorts, interventions, and outcomes, definite conclusions on which fiber to recommend to whom cannot yet be drawn.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jasmin Hajir
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Varvara Sukhobaevskaia
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism; The ARDEN NET Centre, ENETS CoE; University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Boukhers I, Domingo R, Septembre-Malaterre A, Antih J, Silvestre C, Petit T, Kodja H, Poucheret P. Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves. Nutrients 2024; 16:3023. [PMID: 39275338 PMCID: PMC11397558 DOI: 10.3390/nu16173023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Manihot esculenta (cassava) roots is a major food crop for its energy content. Leaves contain nutrients and demonstrate biological properties but remain undervalorized. In order to develop a bioguided optimization of cassava nutrition-health properties, we compared the phytochemistry and bioactive potential of cassava root flour extract (CF) with cassava flour extract enriched with 30% leaves powder (CFL). Cassava flour supplementation impact was explored on flour composition (starch, fiber, carotenoids, phenolic compounds), in vivo glycemic index, and bioactivity potential using macrophage cells. We assessed the impact of cassava flour supplementation on free radicals scavenging and cellular production of pro-inflammatory mediators. CFL showed higher levels of fiber, carotenoids, phenolic compounds, and lower glycemic index. Significantly higher bioactive properties (anti-inflammatory and antioxidant) were recorded, and inhibition of cytokines production has been demonstrated as a function of extract concentration. Overall, our results indicate that enrichment of cassava flour with leaves significantly enhances its nutrition-health and bioactive potential. This bioguided matrix recombination approach may be of interest to provide prophylactic and therapeutic dietary strategy to manage malnutrition and associated chronic non-communicable diseases characterized by low-grade inflammation and unbalanced redox status. It would also promote a more efficient use of available food resources.
Collapse
Affiliation(s)
- Imane Boukhers
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Romain Domingo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Axelle Septembre-Malaterre
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Julien Antih
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Charlotte Silvestre
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Thomas Petit
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, ChemBioPro (EA2212), Université de La Réunion, 15 Avenue René Cassin, 97490 Sainte-Clotilde, France
| | - Hippolyte Kodja
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Patrick Poucheret
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| |
Collapse
|
3
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. Dietary and Lifestyle Strategies for Obesity. Nutrients 2024; 16:2714. [PMID: 39203850 PMCID: PMC11356871 DOI: 10.3390/nu16162714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The prevalence of obesity globally has tripled over the last half century, and currently affects around 650 million adults and 340 million children and adolescents (ages 5-19 years). Obesity contributes towards >50 co-morbidities and premature mortality. Obesity is a highly stigmatised condition that is associated with much mental and emotional distress and dysfunction. Thus, obesity is a major contributor to healthcare expenditure globally. Traditionally, the management of obesity stratifies into three major groups that include metabolic (bariatric) surgery, pharmacotherapies, and lifestyle (primarily dietary) strategies. Although listed as a separate category, dietary strategies for obesity remain a central component of any management plan, and often complement other surgical and pharmacotherapeutic options. Indeed, the effectiveness of any management approach for obesity relies upon successful behavioural changes, particularly relating to eating behaviours. In this concise review, we explore the foundational pillars of dietary strategies for obesity: sleep, listening, routine, de-stressing and optimisation of social conditions. We then discuss the importance of balancing dietary macronutrients (including dietary fibre, carbohydrates, protein and ultra-processed foods [UPFs]) as a key dietary strategy for obesity. Although we focus on general principles, we should provide bespoke dietary strategies for our patients, tailored to their individual needs. Rather than judging the utility of a diet based simply on its associated magnitude of weight loss, we should adopt a more holistic perspective in which a dietary strategy is valued for its overall health benefits, including the nurturing of our gut microbiota, to enable them to nurture and protect us.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany; (S.K.); (A.F.H.P.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Andreas F. H. Pfeiffer
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany; (S.K.); (A.F.H.P.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
4
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. Metabolic-Associated Fatty Liver Disease and Insulin Resistance: A Review of Complex Interlinks. Metabolites 2023; 13:757. [PMID: 37367914 PMCID: PMC10304744 DOI: 10.3390/metabo13060757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) has now surpassed alcohol excess as the most common cause of chronic liver disease globally, affecting one in four people. Given its prevalence, MAFLD is an important cause of cirrhosis, even though only a small proportion of patients with MAFLD ultimately progress to cirrhosis. MAFLD suffers as a clinical entity due to its insidious and often asymptomatic onset, lack of an accurate and reliable non-invasive diagnostic test, and lack of a bespoke therapy that has been designed and approved for use specifically in MAFLD. MAFLD sits at a crossroads between the gut and the periphery. The development of MAFLD (including activation of the inflammatory cascade) is influenced by gut-related factors that include the gut microbiota and intactness of the gut mucosal wall. The gut microbiota may interact directly with the liver parenchyma (through translocation via the portal vein), or indirectly through the release of metabolic metabolites that include secondary bile acids, trimethylamine, and short-chain fatty acids (such as propionate and acetate). In turn, the liver mediates the metabolic status of peripheral tissues (including insulin sensitivity) through a complex interplay of hepatokines, liver-secreted metabolites, and liver-derived micro RNAs. As such, the liver plays a key central role in influencing overall metabolic status. In this concise review, we provide an overview of the complex mechanisms whereby MAFLD influences the development of insulin resistance within the periphery, and gut-related factors impact on the development of MAFLD. We also discuss lifestyle strategies for optimising metabolic liver health.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
5
|
Kabisch S, Weickert MO, Pfeiffer AFH. The role of cereal soluble fiber in the beneficial modulation of glycometabolic gastrointestinal hormones. Crit Rev Food Sci Nutr 2022; 64:4331-4347. [PMID: 36382636 DOI: 10.1080/10408398.2022.2141190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
According to cohort studies, cereal fiber, and whole-grain products might decrease risk for type 2 diabetes (T2DM), inflammatory processes, cancer, and cardiovascular diseases. These associations, mainly affect insoluble, but not soluble cereal fiber. In intervention studies, soluble fiber elicit anti-hyperglycemic and anti-inflammatory short-term effects, partially explained by fermentation to short-chain fatty acids, which acutely counteract insulin resistance and inflammation. ß-glucans lower cholesterol levels and possibly reduce liver fat. Long-term benefits are not yet shown, maybe caused by T2DM heterogeneity, as insulin resistance and fatty liver disease - the glycometabolic points of action of soluble cereal fiber - are not present in every patient. Thus, only some patients might be susceptive to fiber. Also, incretin action in response to fiber could be a relevant factor for variable effects. Thus, this review aims to summarize the current knowledge from human studies on the impact of soluble cereal fiber on glycometabolic gastrointestinal hormones. Effects on GLP-1 appear to be highly contradictory, while these fibers might lower GIP and ghrelin, and increase PYY and CCK. Even though previous results of specific trials support a glycometabolic benefit of soluble fiber, larger acute, and long-term mechanistic studies are needed in order to corroborate the results.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V, Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism; The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V, Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| |
Collapse
|
6
|
Predicting Factors for Metabolic Non-Response to a Complex Lifestyle Intervention-A Replication Analysis to a Randomized-Controlled Trial. Nutrients 2022; 14:nu14224721. [PMID: 36432409 PMCID: PMC9699496 DOI: 10.3390/nu14224721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND T2DM heterogeneity affects responsiveness to lifestyle treatment. Beta-cell failure and nonalcoholic fatty liver disease (NAFLD) independently predict T2DM, but NAFLD inconsistently predicts metabolic response to lifestyle intervention. AIM We attempt to replicate a prediction model deducted from the Tübinger Lifestyle Intervention Program by assessing similar metabolic factors to predict conversion to normal glucose regulation (NGR) in a comparable lifestyle intervention trial. METHODS In the Optimal Fiber Trial (OptiFiT), 131 Caucasian participants with prediabetes completed a one-year lifestyle intervention program and received a fiber or placebo supplement. We compared baseline parameters for responders and non-responders, assessed correlations of major metabolic changes and conducted a logistic regression analysis for predictors of remission to NGR. RESULTS NGR was achieved by 33 participants, respectively. At baseline, for the placebo group only, 1 h and 2 h glucose levels, glucose AUC and Cederholm index predicted conversion to NGR. HOMA-beta, HOMA-IR or liver fat indices did not differ between responders and non-responders of the placebo or the fiber group. Changes in waist circumference or fatty liver index correlated with changes in glycemia and insulin resistance, but not with changes in insulin secretion. Insulin-resistant NAFLD did not predict non-response. Differences in compliance did not explain the results. CONCLUSIONS Higher post-challenge glucose levels strongly predicted the metabolic non-response to complex lifestyle intervention in our cohort. Depending on the specific intervention and the investigated cohort, fasting glucose levels and insulin sensitivity might contribute to the risk pattern. Beta-cell function did not improve in accordance with other metabolic improvements, qualifying as a potential risk factor for non-response. We could not replicate previous data suggesting that an insulin-resistant fatty liver is a specific risk factor for treatment failure. Replication studies are required.
Collapse
|
7
|
Effects of different particle-sized insoluble dietary fibre from citrus peel on adsorption and activity inhibition of pancreatic lipase. Food Chem 2022; 398:133834. [DOI: 10.1016/j.foodchem.2022.133834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
|
8
|
Hu H, Han Y, Liu Y, Guan M, Wan Q. Triglyceride: A mediator of the association between waist-to-height ratio and non-alcoholic fatty liver disease: A second analysis of a population-based study. Front Endocrinol (Lausanne) 2022; 13:973823. [PMID: 36387881 PMCID: PMC9659645 DOI: 10.3389/fendo.2022.973823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Increasing evidence suggests that an increased waist-to-height ratio (WHtR) may increase the risk of non-alcoholic fatty liver disease (NAFLD). Whether this association is due to WHtR itself or mediated by WHtR-associated increases in triglyceride (TG) is uncertain. On that account, our research aims to disentangle these relationships. METHODS In this cross-sectional study, 14251 participants who participated in the medical examination program were consecutively and non-selectively collected in Murakami Memorial Hospital in Japan from 2004 to 2015. The independent and dependent variables were WHtR and NAFLD, respectively. Triglyceride was the mediating factor. The correlation between WHtR, TG, and NAFLD risk factors was examined using spearman correlation analysis. The association between WHtR or TG and NAFLD was examined using multiple logistic regression. In order to determine whether TG mediated the association between WHtR and NAFLD, a mediation analysis was performed. RESULTS The mean age of the included individuals was 43.53 ± 8.89 years old, and 7411 (52.00%) were male. The mean WHtR and TG were 0.46 ± 0.05, 0.89 ± 0.63, respectively. The prevalence rate of NAFLD was 2507 (17.59%). Individuals with NAFLD had significantly higher levels of WHtR and TG than those without NAFLD (P<0.05). After adjusting covariates, the multivariate linear regression analysis showed that WHtR was positively associated with TG. That was, for every 0.1 increase in WHtR, TG increased by 0.226mmol/L (β=0.226, 95%CI: 0.206, 0.247). Multiple logistic regression analysis indicated that WHtR (OR=8.743, 95%CI: 7.528, 10.153) and TG (OR=1.897, 95%CI: 1.732, 2.078) were positively associated with NAFLD. The mediation analysis showed that WHtR had a direct, significant effect on NAFLD (β=0.139, 95%CI: 0.126, 0.148), and TG partially mediated the indirect effect of WHtR on NAFLD (β=0.016, 95% CI: 0.013-0.019). TG contributed to 10.41% of WHtR-related NAFLD development. CONCLUSION Findings suggest a mediation link between WHtR and TG and the risk of NAFLD. The significance of TG as a mediator deserves recognition and consideration.
Collapse
Affiliation(s)
- Haofei Hu
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Yong Han
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
- Department of Emergency, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Emergency, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yufei Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
- Department of Neurosurgery, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Mijie Guan
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
- *Correspondence: Mijie Guan, ; Qijun Wan,
| | - Qijun Wan
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
- *Correspondence: Mijie Guan, ; Qijun Wan,
| |
Collapse
|
9
|
Kabisch S, Honsek C, Kemper M, Gerbracht C, Arafat AM, Birkenfeld AL, Dambeck U, Osterhoff MA, Weickert MO, Pfeiffer AFH. Dose-dependent effects of insoluble fibre on glucose metabolism: a stratified post hoc analysis of the Optimal Fibre Trial (OptiFiT). Acta Diabetol 2021; 58:1649-1658. [PMID: 34254189 PMCID: PMC8542533 DOI: 10.1007/s00592-021-01772-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
AIMS As the first long-term RCT on insoluble cereal fibre, the optimal fibre trial demonstrated glycometabolic benefits, confirming cohort studies. The combined study intervention of lifestyle recommendations and supplementation with insoluble oat hulls fibre allows to clarify, which amount of fibre is required for a beneficial effect. METHODS One hundred and eighty participants with impaired glucose tolerance underwent the one-year PREDIAS lifestyle programme and received a blinded, randomized fibre or placebo supplement for two years. We conducted a regression analyses and cut-off-based tertile comparisons in subjects with full data on dietary compliance (food records and accounted supplement; n = 120) after one year, investigating effects on fasting blood parameters, oral glucose tolerance test and anthropometry. RESULTS We found a nonlinear inverse relation between fibre intake and change in postprandial 2-h glucose levels, showing a metabolic benefit beyond 14 g and a plateau beyond 25 g of total insoluble fibre per day. 2-h glucose levels improved significantly stronger in both upper tertiles (-0.9 [-1.6;-0.2] mmol/l, p = 0.047, and -0.6 [-1.6;0.3] mmol/l, p = 0.010) compared to the lowest tertile (0.1 [-1.2;1.1] mmol/l), also when adjusted for changes in bodyweight. Subjects with the highest fibre intake showed superior effects on fasting and postprandial insulin resistance, hepatic insulin clearance, leucocyte count and fatty liver index. CONCLUSIONS Extending the knowledge on the benefits of insoluble oat hulls fibre, our post hoc analysis demonstrates a dose effect for glycaemia and associated metabolic markers. Further research is needed in order to replicate our findings in larger trials.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany.
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Caroline Honsek
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Margrit Kemper
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Christiana Gerbracht
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Ayman M Arafat
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Andreas L Birkenfeld
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Ulrike Dambeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Martin A Osterhoff
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, CV1 5FB, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| |
Collapse
|
10
|
Kabisch S, Honsek C, Kemper M, Gerbracht C, Meyer NMT, Arafat AM, Birkenfeld AL, Machann J, Dambeck U, Osterhoff MA, Weickert MO, Pfeiffer AFH. Effects of Insoluble Cereal Fibre on Body Fat Distribution in the Optimal Fibre Trial. Mol Nutr Food Res 2021; 65:e2000991. [PMID: 33909947 DOI: 10.1002/mnfr.202000991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/31/2021] [Indexed: 01/07/2023]
Abstract
SCOPE The Optimal Fibre Trial (OptiFiT) investigates metabolic effects of insoluble cereal fibre in subjects with impaired glucose tolerance (IGT), showing moderate glycemic and anti-inflammatory benefits, especially in subjects with an obesity-related phenotype. An OptiFiT sub-group is analysed for effects on body fat distribution. METHODS AND RESULTS 180 participants with IGT receive a blinded, randomized supplementation with insoluble cereal fibre or placebo for 2 years. Once a year, all subjects undergo fasting blood sampling, oral glucose tolerance test, and anthropometric measurements. A subgroup (n=47) also received magnetic resonance imaging and spectroscopy for quantification of adipose tissue distribution and liver fat content. We compared MR, metabolic and inflammatory outcomes between fibre and placebo group metabolism and inflammation. Visceral and non-visceral fat, fasting glucose, HbA1c, fasting insulin, insulin resistance, and uric acid decrease only in the fibre group, mirroring effects of the entire cohort. However, after adjustment for weight loss, there are no significant between-group differences. There is a statistical trend for fibre-driven liver fat reduction in subjects with confirmed non-alcoholic fatty liver disease (NAFLD; n = 19). CONCLUSIONS Data and evidence on beneficial effects of insoluble cereal fibre on visceral and hepatic fatstorage is limited, but warrants further research. Targeted trials are required.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Caroline Honsek
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Christiana Gerbracht
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Nina Marie Tosca Meyer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Ayman M Arafat
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Andreas L Birkenfeld
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany
| | - Jürgen Machann
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany.,Department of Radiology, Section on Experimental Radiology, University of Tübingen, Otfried-Müller-Str. 51, Tübingen, 72076, Germany
| | - Ulrike Dambeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.,Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, CV1 5FB, UK.,Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| |
Collapse
|
11
|
The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients 2021; 13:nu13041187. [PMID: 33916669 PMCID: PMC8066770 DOI: 10.3390/nu13041187] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Diets have been a central component of lifestyle modification for decades. The Low-Carbohydrate Diet (LCD), originally conceived as a treatment strategy for intractable epilepsy (due to its association with ketogenesis), became popular in the 1970s and since then has risen to prominence as a weight loss strategy. Objective: To explore the efficacy, limitations and potential safety concerns of the LCD. Data Sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the terms ‘low carbohydrate diet and metabolic health’. Results: Evidence supports the efficacy of the LCD in the short-term (up to 6-months) for reduction in fat mass and remission of Type 2 Diabetes Mellitus (T2D). However, the longer-term efficacy of the LCD is disappointing, with diminishment of weight loss potential and metabolic benefits of the LCD beyond 6-months of its adoption. Furthermore, practical limitations of the LCD include the associated restriction of food choices that restrict the acceptability of the LCD for the individual, particularly over the longer term. There are also safety concerns of the LCD that stem from nutritional imbalances (with a relative excess of dietary fat and protein intake with associated dyslipidaemia and increased risk of insulin resistance and T2D development) and ketotic effects. Finally, the LCD often results in a reduction in dietary fibre intake, with potentially serious adverse consequences for overall health and the gut microbiota. Conclusions: Although widely adopted, the LCD usually has short-lived metabolic benefits, with limited efficacy and practicality over the longer term. Dietary modification needs tailoring to the individual, with careful a priori assessments of food preferences to ensure acceptability and adherence over the longer term, with avoidance of dietary imbalances and optimization of dietary fibre intake (primarily from plant-based fruit and vegetables), and with a posteriori assessments of the highly individual responses to the LCD. Finally, we need to change our view of diets from simply an excipient for weight loss to an essential component of a healthy lifestyle.
Collapse
|
12
|
Chen O, Mah E, Dioum E, Marwaha A, Shanmugam S, Malleshi N, Sudha V, Gayathri R, Unnikrishnan R, Anjana RM, Krishnaswamy K, Mohan V, Chu Y. The Role of Oat Nutrients in the Immune System: A Narrative Review. Nutrients 2021; 13:1048. [PMID: 33804909 PMCID: PMC8063794 DOI: 10.3390/nu13041048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal nutrition is the foundation for the development and maintenance of a healthy immune system. An optimal supply of nutrients is required for biosynthesis of immune factors and immune cell proliferation. Nutrient deficiency/inadequacy and hidden hunger, which manifests as depleted nutrients reserves, increase the risk of infectious diseases and aggravate disease severity. Therefore, an adequate and balanced diet containing an abundant diversity of foods, nutrients, and non-nutrient chemicals is paramount for an optimal immune defense against infectious diseases, including cold/flu and non-communicable diseases. Some nutrients and foods play a larger role than others in the support of the immune system. Oats are a nutritious whole grain and contain several immunomodulating nutrients. In this narrative review, we discuss the contribution of oat nutrients, including dietary fiber (β-glucans), copper, iron, selenium, and zinc, polyphenolics (ferulic acid and avenanthramides), and proteins (glutamine) in optimizing the innate and adaptive immune system's response to infections directly by modulating the innate and adaptive immunity and indirectly by eliciting changes in the gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Oliver Chen
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Eunice Mah
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
| | - ElHadji Dioum
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| | - Ankita Marwaha
- PepsiCo Health & Nutrition Sciences, AMESA, Gurgaon 122101, India;
| | - Shobana Shanmugam
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Nagappa Malleshi
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Vasudevan Sudha
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Rajagopal Gayathri
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Kamala Krishnaswamy
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| |
Collapse
|
13
|
Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. Int J Mol Sci 2021; 22:ijms22020546. [PMID: 33430419 PMCID: PMC7827338 DOI: 10.3390/ijms22020546] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity mediates most of its direct medical sequelae through the development of insulin resistance (IR). The cellular effects of insulin occur through two main postreceptor pathways that are the phosphatidylinositol 3-kinase (PI3-K) and the mitogen-activated protein kinase (MAP-K) pathways. Obesity-related IR implicates the PI3-K pathway that confers the metabolic effects of insulin. Numerous and complex pathogenic pathways link obesity with the development of IR, including chronic inflammation, mitochondrial dysfunction (with the associated production of reactive oxygen species and endoplasmic reticulum stress), gut microbiota dysbiosis and adipose extracellular matrix remodelling. IR itself plays a key role in the development of metabolic dysfunction, including hypertension, dyslipidaemia and dysglycaemia. Furthermore, IR promotes weight gain related to secondary hyperinsulinaemia, with a resulting vicious cycle of worsening IR and its metabolic sequelae. Ultimately, IR underlies obesity-related conditions such as type 2 diabetes mellitus (T2D) and polycystic ovary syndrome (PCOS). IR also underlies many obesity-related malignancies, through the effects of compensatory hyperinsulinaemia on the relatively intact MAP-K insulin pathway, which controls cellular growth processes and mitoses. Furthermore, the emergent data over recent decades support an important role of obesity- and T2D-related central IR in the development of cognitive dysfunction, including effects on hippocampal synaptic plasticity. Importantly, IR is largely reversible through the optimisation of lifestyle factors that include regular engagement in physical activity with the avoidance of sedentariness, improved diet including increased fibre intake and sleep sufficiency. IR lies at the key crossroad between obesity and both metabolic and cognitive dysfunction. Given the importance of IR in the pathogenesis of many 21st century chronic diseases and its eminent reversibility, it is important that we all embrace and facilitate optimised lifestyles to improve the future health and wellbeing of the populace.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Correspondence:
| |
Collapse
|
14
|
Bai J, Li Y, Zhang W, Fan M, Qian H, Zhang H, Qi X, Wang L. Effects of cereal fibers on short-chain fatty acids in healthy subjects and patients: a meta-analysis of randomized clinical trials. Food Funct 2021; 12:7040-7053. [PMID: 34152334 DOI: 10.1039/d1fo00858g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Short-chain fatty acids (SCFAs) are involved in the regulation of a wide array of diseases. However, the effect of cereal dietary fibers on SCFA production remains unclear. We reviewed relevant clinical studies between 1950 and 2021 and aimed to evaluate the effect of cereal fiber consumption on SCFA production in healthy subjects and patients. PubMed, Web of Science, and the Cochrane Library databases were used for systematically searching published relevant trials with adults and a minimum intervention duration of 2 weeks. The effect size was estimated using standardized mean difference (SMD) and 95% confidence interval (CI). Of the 555 identified studies, 14 intervention groups involving 205 participants aged between 20 and 69 years are eligible. The results of meta-analysis revealed that cereal fiber supplementation significantly increased acetate [SMD: 0.86, 95% CI (0.46, 1.25), p < 0.0001], propionate [SMD: 0.48, 95% CI: (0.15, 0.81), p = 0.004], butyrate [SMD: 0.61, 95% CI: (0.20, 1.01), p = 0.003], and total SCFA [SMD, 0.96, 95% CI: (0.54, 1.39), p < 0.00001] concentrations. Subgroup analysis suggested that a long intervention duration (>4 weeks) significantly promoted acetate and propionate production, whereas a short intervention duration (≤4 weeks) significantly facilitated butyrate production. Cereal fiber supplementation had a more significant impact on overweight and obese subjects with body mass index (BMI) >29 kg m-2 than on individuals with BMI ≤29 kg m-2. Furthermore, we found that cereal fibers and wheat/rye arabinoxylan oligosaccharides, rather than wheat bran fibers, barley fibers, and barley β-glucan, could significantly elevate the SCFA concentration. Overall, our meta-analysis demonstrated that cereal fiber supplementation is helpful in increasing the SCFA concentration, which provided strong proof for the beneficial role of cereal fibers.
Collapse
Affiliation(s)
- Junying Bai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
The Health Benefits of Dietary Fibre. Nutrients 2020; 12:nu12103209. [PMID: 33096647 PMCID: PMC7589116 DOI: 10.3390/nu12103209] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dietary fibre consists of non-digestible forms of carbohydrate, usually as polysaccharides that originate from plant-based foods. Over recent decades, our diet within Westernised societies has changed radically from that of our hominid ancestors, with implications for our co-evolved gut microbiota. This includes increased ingestion of ultra-processed foods that are typically impoverished of dietary fibre, and associated reduction in the intake of fibre-replete plant-based foods. Over recent decades, there has been a transformation in our understanding of the health benefits of dietary fibre. Objective: To explore the current medical literature on the health benefits of dietary fibre, with a focus on overall metabolic health. Data Sources: We performed a narrative review, based on relevant articles written in English from a PubMed search, using the terms ‘dietary fibre and metabolic health’. Results: In the Western world, our diets are impoverished of fibre. Dietary fibre intake associates with overall metabolic health (through key pathways that include insulin sensitivity) and a variety of other pathologies that include cardiovascular disease, colonic health, gut motility and risk for colorectal carcinoma. Dietary fibre intake also correlates with mortality. The gut microflora functions as an important mediator of the beneficial effects of dietary fibre, including the regulation of appetite, metabolic processes and chronic inflammatory pathways. Conclusions: Multiple factors contribute to our fibre-impoverished modern diet. Given the plethora of scientific evidence that corroborate the multiple and varied health benefits of dietary fibre, and the risks associated with a diet that lacks fibre, the optimization of fibre within our diets represents an important public health strategy to improve both metabolic and overall health. If implemented successfully, this strategy would likely result in substantial future health benefits for the population.
Collapse
|