1
|
Yawoot N, Tocharus J, Tocharus C. Toll-Like Receptor 4-Mediated Neuroinflammation: Updates on Pathological Roles and Therapeutic Strategies in Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025:10.1007/s12035-025-04718-7. [PMID: 39875782 DOI: 10.1007/s12035-025-04718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions. It has been reported that TLR4 is involved in the pathology of several diseases and has emerged as a therapeutic target for developing a variety of anti-inflammatory compounds. This study explored the pathological roles of TLR4 that potentially cause the promotion of neuroinflammation in CCH damage. The evidence pertinent to the activation of TLR4 and its downstream inflammatory cascades following CCH are also summarized. This study also demonstrated the therapeutic potential of TLR4 inhibition, whether through drugs, substances, or other treatment strategies, in models of CCH-induced neurological dysfunction. The limitations of the accumulated evidence are addressed and discussed in this study. A deeper understanding of the roles of TLR4 in neuroinflammation following CCH damage may help inform the machinery behind pathological processes for advancing further neuroscientific research and developing therapeutic strategies for vascular dementia.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Miao TL, Qin S, Chen XH, Chen LY, Han YQ, Yuan YL, Rui X, Li W, Zhang QQ. Microwave replacing traditional concentrating process to promote the synthesis of mumefural in Prunus mume extract. Food Res Int 2025; 199:115370. [PMID: 39658166 DOI: 10.1016/j.foodres.2024.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Mumefural (MF), the primary functional ingredient of prunus mume extract that enhances blood fluidity, is produced by boiling the prunus mume juice for 24-48 h in a traditional one-step concentration process. Low MF yields and long processing time are two disadvantages of this process. This study introduced microwaves into the traditional one-step concentration process of prunus mume extract for increasing MF content. The best time for microwave treatment of prunus mume extract was concentrated to remove 93 %-95 % water. Results demonstrated that as microwave processing time increased, the content of reducing sugar, glucose, fructose, titratable acid content, and organic acids initially significantly increased (p < 0.05) and subsequently dramatically decreased (p < 0.05). Additionally, 5-Hydroxymethylfurfural (5-HMF) and MF showed a significant increase (p < 0.05) with the extension of microwave processing time. The MF generated by microwave for 0.5 min was equal to the concentration for 0.5 h. After 2 min microwave, the MF content in the prunus mume extract increased by fivefold compared to the sample without microwave treatment, and the maximum increase in MF was 3.19 g/kg. The two-step process consisted of concentration followed by microwave, which could shorten the concentration-time, promote the synthesis of MF, increase the content of MF, and provide a new idea for enterprises to improve the processing technology of prunus mume extract.
Collapse
Affiliation(s)
- Teng Long Miao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shan Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiao Hong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Long Yun Chen
- Nanjing Longlijia Agricultural Development Co. Ltd., Nanjing 211219, China.
| | - Yan Qing Han
- Physical & Chemical Testing Centre of Jiangsu Province, Nanjing 210042, China.
| | - Yan Li Yuan
- Physical & Chemical Testing Centre of Jiangsu Province, Nanjing 210042, China.
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiu Qin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China.
| |
Collapse
|
3
|
Zhu H, Hu E, Guo X, Yuan Z, Jiang H, Zhang W, Tang T, Wang Y, Li T. Promoting remyelination in central nervous system diseases: Potentials and prospects of natural products and herbal medicine. Pharmacol Res 2024; 210:107533. [PMID: 39617281 DOI: 10.1016/j.phrs.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Myelin damage is frequently associated with central nervous system (CNS) diseases and is a critical factor influencing neurological function and disease prognosis. Nevertheless, the majority of current treatments for the CNS concentrate on gray matter injury and repair strategies, while clinical interventions specifically targeting myelin repair remain unavailable. In recent years, natural products and herbal medicine have achieved considerable progress in the domain of myelin repair, given their remarkable curative effect and low toxic side effects, demonstrating significant therapeutic potential. In this review, we present a rather comprehensive account of the mechanisms underlying myelin formation, injury, and repair, with a particular emphasis on the interactions between oligodendrocytes and other glial cells. Furthermore, we summarize the natural products and herbal medicine currently employed in remyelination along with their mechanisms of action, highlighting the potential and challenges of certain natural compounds to enhance myelin repair. This review aims to facilitate the expedited development of innovative therapeutics derived from natural products and herbal medicine and furnish novel insights into myelin repair in the CNS.
Collapse
Affiliation(s)
- Haonan Zhu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Xin Guo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhiqiang Yuan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Haoying Jiang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China.
| |
Collapse
|
4
|
Asadi nejad H, Yousefi Nejad A, Akbari S, Naseh M, Shid Moosavi SM, Haghani M. The low and high doses administration of lutein improves memory and synaptic plasticity impairment through different mechanisms in a rat model of vascular dementia. PLoS One 2024; 19:e0302850. [PMID: 38748711 PMCID: PMC11095768 DOI: 10.1371/journal.pone.0302850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND AND AIM Vascular dementia (VD) is a common type of dementia. This study aimed to evaluate the effects of low and high doses of lutein administration in bilateral-carotid vessel occlusion (2VO) rats. EXPERIMENTAL PROCEDURE The rats were divided into the following groups: the control, sham-, vehicle (2VO+V) groups, and two groups after 2VO were treated with lutein 0.5 (2VO+LUT-o.5) and 5mg/kg (2VO+LUT-5). The passive-avoidance and Morris water maze were performed to examine fear and spatial memory. The field-potential recording was used to investigate the properties of basal synaptic transmission (BST), paired-pulse ratio (PPR), as an index for measurement of neurotransmitter release, and long-term potentiation (LTP). The hippocampus was removed to evaluate hippocampal cells, volume, and MDA level. RESULT Treatment with low and high doses improves spatial memory and LTP impairment in VD rats, but only the high dose restores the fear memory, hippocampal cell loss, and volume and MDA level. Interestingly, low-dose, but not high-dose, increased PPR. However, BST recovered only in the high-dose treated group. CONCLUSIONS Treatment with a low dose might affect neurotransmitter release probability, but a high dose affects postsynaptic processes. It seems likely that low and high doses improve memory and LTP through different mechanisms.
Collapse
Affiliation(s)
- Hamideh Asadi nejad
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Faculty of Veterinary Medicine, Department of Veterinary Medicine Islamic Azad University of Kazeroon, Shiraz, Iran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Song J, Li M, Kang N, Jin W, Xiao Y, Li Z, Qi Q, Zhang J, Duan Y, Feng X, Lv P. Baicalein ameliorates cognitive impairment of vascular dementia rats via suppressing neuroinflammation and regulating intestinal microbiota. Brain Res Bull 2024; 208:110888. [PMID: 38295883 DOI: 10.1016/j.brainresbull.2024.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Neuroinflammation induced by chronic cerebral hypoperfusion (CCH) plays a crucial role in the pathophysiologic mechanisms of vascular dementia (VD). A growing body of research has found that intestinal microbiota is associated with a variety of central nervous system disorders and that there is a relationship between intestinal microbiota dysbiosis and cognitive dysfunction and inflammatory responses. Baicalein belongs to the class of flavonoids and has a variety of biological functions, including anti-inflammatory, antioxidant and anti-apoptotic. Baicalein has a significant improvement in memory and learning, and can be used as a potential drug for the protection and treatment of central nervous system disorders. Whether baicalein has an ameliorative effect on cognitive impairment in VD, and whether its mechanism is related to the inhibition of inflammatory response and regulation of intestinal microbiota has not been reported. We used bilateral common carotid artery occlusion (BCCAO) to establish a VD rat model. Morris water maze (MWM) test showed that baicalein improved cognitive dysfunction in VD rats. We applied HE staining, immunofluorescence and ELISA to observe that baicalein treatment significantly improved CCH-induced neuronal damage in the CA1 region of the hippocampus, and reduced glial cell activation and release of pro-inflammatory factors. Western blot showed that baicalein inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway in VD rats. We applied 16 S rDNA sequencing to analyze the composition of the intestinal microbiota. The results showed that baicalein modulated the diversity and composition of the intestinal microbiota, and suppressed the relative abundance of inflammation-associated microbiota in VD rats. In conclusion, this study found that baicalein ameliorated cognitive impairment, attenuated hippocampal inflammatory responses, inhibited the TLR4/MyD88/NF-κB signaling pathway, and modulated intestinal microbiota in VD rats.
Collapse
Affiliation(s)
- Jiaxi Song
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Ning Kang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Jiayu Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yaxin Duan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaoxiao Feng
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Zhang J, Zhao Y, Zhang Y, Liu L, Xu X, Wang X, Fu J. ChemR23 activation attenuates cognitive impairment in chronic cerebral hypoperfusion by inhibiting NLRP3 inflammasome-induced neuronal pyroptosis. Cell Death Dis 2023; 14:721. [PMID: 37932279 PMCID: PMC10628255 DOI: 10.1038/s41419-023-06237-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Neuroinflammation plays critical roles in vascular dementia (VaD), the second leading cause of dementia, which can be induced by chronic cerebral hypoperfusion (CCH). NLRP3 inflammasome-induced pyroptosis, the inflammatory programmed cell death, has been reported to contribute to the development of VaD. ChemR23 is a G protein-coupled receptor that has emerging roles in regulating inflammation. However, the role of ChemR23 signalling in NLRP3 inflammasome-induced pyroptosis in CCH remains elusive. In this study, a CCH rat model was established by permanent bilateral common carotid artery occlusion (BCCAO) surgery. Eight weeks after the surgery, the rats were intraperitoneally injected with the ChemR23 agonist Resolvin E1 (RvE1) or chemerin-9 (C-9). Additionally, primary rat hippocampal neurons and SH-SY5Y cells were adopted to mimic CCH injury in vitro. Our results showed that the levels of ChemR23 expression were decreased from the 8th week after BCCAO, accompanied by significant cognitive impairment. Further analysis revealed that CCH induced neuronal damage, synaptic injury and NLRP3-related pyroptosis activation in hippocampal neurons. However, pharmacologic activation of ChemR23 with RvE1 or C-9 counteracted these changes. In vitro experiments also showed that ChemR23 activation prevented primary neuron pyroptosis induced by chronic hypoxia. In addition, manipulating ChemR23 expression markedly regulated NLRP3 inflammasome-induced neuronal pyroptosis through PI3K/AKT/Nrf2 signalling in SH-SY5Y cells under hypoglycaemic and hypoxic conditions. Collectively, our data demonstrated that ChemR23 activation inhibits NLRP3 inflammasome-induced neuronal pyroptosis and improves cognitive function via the PI3K/AKT/Nrf2 signalling pathway in CCH models. ChemR23 may serve as a potential novel therapeutic target to treat CCH-induced cognitive impairment.
Collapse
Affiliation(s)
- Yaxuan Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yao Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Lan Liu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
7
|
Kim MS, Kim BY, Kim JI, Lee J, Jeon WK. Mumefural Improves Recognition Memory and Alters ERK-CREB-BDNF Signaling in a Mouse Model of Chronic Cerebral Hypoperfusion. Nutrients 2023; 15:3271. [PMID: 37513692 PMCID: PMC10383324 DOI: 10.3390/nu15143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cognitive impairment resulting from chronic cerebral hypoperfusion (CCH) is known as vascular dementia (VaD) and is associated with cerebral atrophy and cholinergic deficiencies. Mumefural (MF), a bioactive compound found in a heated fruit of Prunus mume Sieb. et Zucc, was recently found to improve cognitive impairment in a rat CCH model. However, additional evidence is necessary to validate the efficacy of MF administration for treating VaD. Therefore, we evaluated MF effects in a mouse CCH model using unilateral common carotid artery occlusion (UCCAO). Mice were subjected to UCCAO or sham surgery and orally treated with MF daily for 8 weeks. Behavioral tests were used to investigate cognitive function and locomotor activity. Changes in body and brain weights were measured, and levels of hippocampal proteins (brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase (ERK), cyclic AMP-response element-binding protein (CREB), and acetylcholinesterase (AChE)) were assessed. Additionally, proteomic analysis was conducted to examine the alterations in protein profiles induced by MF treatment. Our study showed that MF administration significantly improved cognitive deficits. Brain atrophy was attenuated and MF treatment reversed the increase in AChE levels. Furthermore, MF significantly upregulated p-ERK/ERK, p-CREB/CREB, and BDNF levels after UCCAO. Thus, MF treatment ameliorates CCH-induced cognitive impairment by regulating ERK/CREB/BDNF signaling, suggesting that MF is a therapeutic candidate for treating CCH.
Collapse
Affiliation(s)
- Min-Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jung Im Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | | | - Won Kyung Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
8
|
Zheng J, Zhu H, Zhao Z, Du M, Wang Z, Lan L, Zhang J. Vesicular acetylcholine transporter in the basal forebrain improves cognitive impairment in chronic cerebral hypoperfusion rats by modulating theta oscillations in the hippocampus. Neurosci Lett 2023; 807:137281. [PMID: 37120008 DOI: 10.1016/j.neulet.2023.137281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
The cholinergic transmission in the medial septum and ventral limb of the diagonal band of broca (MS/VDB)-hippocampal circuit and its associated theta oscillations play a crucial role in chronic cerebral hypoperfusion (CCH)-related cognitive impairment. However, the contribution and mechanism of the vesicular acetylcholine transporter (VAChT), a vital protein that regulates acetylcholine (ACh) release, in CCH-related cognitive impairment are not well understood. To investigate this, we established a rat model of CCH by performing 2-vessel occlusion (2-VO) and overexpressed VAChT in the MS/VDB via stereotaxic injection of adeno-associated virus (AAV). We evaluated the cognitive function of the rats using the Morris Water Maze (MWM) and Novel Object Recognition Test (NOR). We employed enzyme-linked immunosorbent assay (ELISA), Western blot (WB), and immunohistochemistry (IHC) to assess hippocampal cholinergic levels. We also conducted in vivo local field potentials (LFPs) recording experiments to evaluate changes in hippocampal theta oscillations and synchrony. Our findings showed that VAChT overexpression shortened the escape latency in the hidden platform test, increased swimming time in the platform quadrant in probe trains, and increased the recognition index (RI) in NOR. Moreover, VAChT overexpression increased hippocampal cholinergic levels, improved theta oscillations, and improved the synchrony of theta oscillations between CA1 and CA3 in CCH rats. These results suggest that VAChT plays a protective role in CCH-induced cognitive deficits by regulating cholinergic transmission in the MS/VDB-hippocampal circuit and promoting hippocampal theta oscillations. Therefore, VAChT could be a promising therapeutic target for treating CCH-related cognitive impairments.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Hong Zhu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhenyu Zhao
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Miaoyu Du
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhitian Wang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Liuyi Lan
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
9
|
Du Y, Wang M, Xu J, Zhong R, Jia J, Huang J, Yao C, Huang L, Huang G, Ke X, Wang H, Fu L. Investigation of therapeutic effects of rhubarb decoction retention enema on minimal hepatic encephalopathy in rats based on 16S rDNA gene sequencing and bile acid metabolomics. J Pharm Biomed Anal 2023; 230:115392. [PMID: 37059036 DOI: 10.1016/j.jpba.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
Minimal hepatic encephalopathy (MHE) is an early stage of hepatic encephalopathy (HE), with high incidence and a high rate of clinically missed diagnosis. Early diagnosis of MHE and effective clinical intervention are of great importance. Rhubarb decoction (RD)-induced retention enema can effectively improve the cognitive function of patients with MHE, whereas disturbances in the enterohepatic circulation of bile acid (BAs) can induce MHE. However, the molecular mechanisms underlying the therapeutic effects of RD have not been examined from the perspective of intestinal microbiota and bile metabolomics. In this study, we investigated the effects of RD-induced retention enema on intestinal microbiota and bile metabolites in rats with CCl4- and TAA-induced MHE. RD-induced retention enema significantly improved liver function, reduced blood ammonia levels, alleviated cerebral oedema and restored cognitive function in rats with MHE. In addition, it increased the abundance of intestinal microbes; partially reversed the disorder in the composition of intestinal microbiota, including the Bifidobacterium and Bacteroides genera; and regulated BA metabolism, such as taurine combined with increased BA synthesis. In conclusion, this study highlights the potential importance of BA enterohepatic circulation for RD to improve cognitive function in MHE rats, providing a new perspective on the mechanism of this herb. The findings of this study will facilitate experimental research on RD and help to develop RD-based strategies for clinical application.
Collapse
Affiliation(s)
- Yuanqin Du
- Guangxi University of Chinese Medicine, Nanning, China
| | - Meng Wang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Xianhu District, Nanning, China.
| | - Jian Xu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ruixi Zhong
- Guangxi University of Chinese Medicine, Nanning, China
| | - Juhong Jia
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jingjing Huang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Xianhu District, Nanning, China; Guangxi Key Laboratory of Translational Medicine of Integrated Traditional Chinese and Western Medicine, Nanning, China.
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, China
| | | | - Guochu Huang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Xianhu District, Nanning, China
| | - Xuan Ke
- Guangxi University of Chinese Medicine, Nanning, China
| | - Han Wang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Fu
- Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
10
|
Kumaran KR, Wahab HA, Hassan Z. Nootropic effect of Syzygium polyanthum (Wight) Walp leaf extract in chronic cerebral hypoperfusion rat model via cholinergic restoration: a potential therapeutic agent for dementia. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Seyedaghamiri F, Hosseini L, Kazmi S, Mahmoudi J, Shanehbandi D, Ebrahimi-Kalan A, Rahbarghazi R, Sadigh-Eteghad S, Farhoudi M. Varenicline improves cognitive impairment in a mouse model of mPFC ischemia: The possible roles of inflammation, apoptosis, and synaptic factors. Brain Res Bull 2022; 181:36-45. [DOI: 10.1016/j.brainresbull.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
|
12
|
Zhou M, Li J, Luo D, Zhang H, Yu Z, Chen Y, Li Q, Liang F, Chen R. Network Pharmacology and Molecular Docking-Based Investigation: Prunus mume Against Colorectal Cancer via Silencing RelA Expression. Front Pharmacol 2021; 12:761980. [PMID: 34867383 PMCID: PMC8640358 DOI: 10.3389/fphar.2021.761980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most pervasive cancers in the human disease spectrum worldwide, ranked the second most common cause of cancer death by the end of 2020. Prunus mume (PM) is an essential traditional Chinese medicine for the adjuvant treatment of solid tumors, including CRC. In the current study, we utilize means of network pharmacology, molecular docking, and multilayer experimental verification to research mechanism. The five bioactive compounds and a total of eight critical differentially expressed genes are screened out using the bioinformatics approaches of Cytoscape software, String database, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathways, and molecular docking. RelA has been proven to be highly expressed in CRC. Experiments in vitro have shown that kaempferol, the main active component of PM, dramatically inhibited the growth, migration, and invasion of CRC cells, and experiments in vivo have shown that PM effectively delays CRC formation and improves the survival cycle of mice. Further analysis shows that PM inhibits the CRC progression by down-regulating the expression level of RelA, Bax, caspase 3, caspase 9, and EGFR in CRC. PM and its extract are potentially effective therapeutics for the treatment of CRC via the RelA/nuclear factor κB signaling pathway.
Collapse
Affiliation(s)
- Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Luo
- Department of Respiratory Medicine, Wuhan First Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Youlin Chen
- School of Resources and Environment Science, Wuhan University, Wuhan, China
| | - Qiumeng Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengxia Liang
- College of Acupuncture & Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Huo S, Ren J, Ma Y, Ozathaley A, Yuan W, Ni H, Li D, Liu Z. Upregulation of TRPC5 in hippocampal excitatory synapses improves memory impairment associated with neuroinflammation in microglia knockout IL-10 mice. J Neuroinflammation 2021; 18:275. [PMID: 34836549 PMCID: PMC8620645 DOI: 10.1186/s12974-021-02321-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the transient receptor potential canonical (TRPC) protein family are widely distributed in the hippocampus of mammals and exert respective and cooperative influences on the functions of neurons. The relationship between specific TRPC subtypes and neuroinflammation is receiving increasing attention. METHODS Using Cx3cr1CreERIL-10-/- transgenic mice and their littermates to study the relationship between TRPC channels and memory impairment. RESULTS We demonstrated that Cx3cr1CreERIL-10-/- mice displayed spatial memory deficits in object location recognition (OLR) and Morris water maze (MWM) tasks. The decreased levels of TRPC4 and TRPC5 in the hippocampal regions were verified via reverse transcription polymerase chain reaction, western blotting, and immunofluorescence tests. The expression of postsynaptic density protein 95 (PSD95) and synaptophysin in the hippocampus decreased with an imbalance in the local inflammatory environment in the hippocampus. The number of cells positive for ionized calcium-binding adaptor molecule 1 (Iba1), a glial fibrillary acidic protein (GFAP), increased with the high expression of interleukin 6 (IL-6) in Cx3cr1CreERIL-10-/- mice. The nod-like receptor protein 3 (NLRP3) inflammasome was also involved in this process, and the cytokines IL-1β and IL-18 activated by NLRP3 were also elevated by western blotting. The co-localization of TRPC5 and calmodulin-dependent protein kinase IIα (CaMKIIα) significantly decreased TRPC5 expression in excitatory neurons. AAV9-CaMKIIα-TRPC5 was used to upregulate TRPC5 in excitatory neurons in the hippocampus. CONCLUSIONS The results showed that the upregulation of TRPC5 improved the memory performance of Cx3cr1CreERIL-10-/- mice related to inhibiting NLRP3 inflammasome-associated neuroinflammation.
Collapse
Affiliation(s)
- Shiji Huo
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Jiling Ren
- Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Yunqing Ma
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Ahsawle Ozathaley
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Wenjian Yuan
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Hong Ni
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
| | - Dong Li
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
| | - Zhaowei Liu
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China.
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
Yan N, Xu Z, Qu C, Zhang J. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 2021; 98:107844. [PMID: 34153667 DOI: 10.1016/j.intimp.2021.107844] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease and its risk factors cause persistent decrease of cerebral blood flow, chronic cerebral hypoperfusion (CCH) is the major foundation of vascular cognitive impairment (VCI). The hippocampus is extremely vulnerable to cerebral ischemia and hypoxia. Oxidative stress and neuroinflammation injury are important pathophysiological mechanisms of this process, which is closely related to hippocampal neurons damage and loss. Dimethyl fumarate (DMF), an FDA-approved therapeutic for multiple sclerosis (MS), plays a protective role in multiple neurological disorders. Studies have shown that DMF exerts anti-inflammatory and antioxidant effects via the NRF2/ARE/NF-κB signaling pathway. Thus, this study aimed to evaluate the neuroprotective effect of DMF in the CCH rat model. Ferroptosis, a novel defined iron-dependent cell death form, were found to be strongly associated with the pathophysiology of CCH. Emerging evidences have shown that inhibition of ferroptosis by targeting NRF2 exerted neuroprotective effect in neurodegeneration diseases. We also investigated whether DMF can alleviate cognitive deficits through inhibition of ferroptosis by the NRF2 signaling pathway in this study. DMF was intragastric for consecutive five weeks (100 mg/kg/day). Then behavior test and histological, molecular, and biochemical analysis were performed. We found that DMF treatment significantly improved cognitive deficits and partially reversed hippocampus neuronal damage and loss caused by CCH. And DMF treatment decreased hippocampus IL-1β, TNF-α, and IL-6 pro-inflammatory cytokines concentration, and mediated the NF-κB signaling pathway. And DMF also alleviated hippocampus oxidative stress through reducing MDA, and increasing GSH and SOD levels, which are also closely associated with ferroptosis. Besides, DMF treatment reduced the expression of PTGS2, and increased the expression of FTH1 and xCT, and the iron content is also reduced, which were the important features related to ferroptosis. Furthermore, DMF activated the NRF2/ARE signaling pathway and upregulated the expression of HO-1, NQO1 and GPX4. These outcomes indicated that DMF can improve cognitive impairment in rats with CCH, possibly through alleviating neuroinflammation, oxidative stress damage and inhibiting ferroptosis of hippocampal neurons. Overall, our results provide new evidence for the neuroprotective role of DMF.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
15
|
Kim MS, Bang J, Kim BY, Jeon WK. Impaired Cognitive Flexibility Induced by Chronic Cerebral Hypoperfusion in the 5XFAD Transgenic Mouse Model of Mixed Dementia. J Gerontol A Biol Sci Med Sci 2021; 76:1169-1178. [PMID: 33709149 PMCID: PMC8202140 DOI: 10.1093/gerona/glab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular lesions are widely prevalent in patients with Alzheimer’s disease (AD), but their relationship to the pathophysiology of AD remains poorly understood. An improved understanding of the interaction of cerebrovascular damage with AD is crucial for the development of therapeutic approaches. Herein, we investigated the effects of chronic cerebral hypoperfusion (CCH) in a 5XFAD transgenic (Tg) mouse model of AD. We established CCH conditions in both Tg and non-Tg mice by inducing unilateral common carotid artery occlusion (UCCAO). Cognitive performance in mice was evaluated, and their brain tissue was examined for amyloid-beta (Aβ) pathology to elucidate possible mechanisms. We found that UCCAO-operated Tg mice showed impaired cognitive flexibility in the reversal phase of the hidden-platform water maze task compared to sham-operated Tg mice. Interestingly, UCCAO-operated Tg mice used fewer spatial cognitive strategies than sham-operated Tg mice during reversal learning. These cognitive deficits were accompanied by increased Aβ plaque burden and Aβ42 levels in the hippocampus and prefrontal cortex, 2 regions that play essential roles in the regulation of cognitive flexibility. Furthermore, changes in cognitive flexibility are strongly correlated with the expression levels of enzymes related to Aβ clearance, such as neprilysin and insulin-degrading enzymes. These findings suggest that, in 5XFAD mice, impaired cognitive flexibility is related to CCH, and that Aβ clearance might be involved in this process.
Collapse
Affiliation(s)
- Min-Soo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jihye Bang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
16
|
Yao ZH, Wang J, Yuan JP, Xiao K, Zhang SF, Xie YC, Mei JH. EGB761 ameliorates chronic cerebral hypoperfusion-induced cognitive dysfunction and synaptic plasticity impairment. Aging (Albany NY) 2021; 13:9522-9541. [PMID: 33539323 PMCID: PMC8064192 DOI: 10.18632/aging.202555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) may lead to the cognitive dysfunction, but the underlying mechanisms are unclear. EGB761, extracted from Ginkgo biloba and as a phytomedicine widely used in the world, has been showed to have various neuroprotective roles and mechanisms, and therapeutic effects in Alzheimer’s disease and other cognitive dysfunctions. However, improvements in cognitive function after CCH, following treatment with EGB761, have not been ascertained yet. In this study, we used the behavior test, electrophysiology, neurobiochemistry, and immunohistochemistry to investigate the EGB761’s effect on CCH-induced cognitive dysfunction and identify its underlying mechanisms. The results showed that EGB761 ameliorates spatial cognitive dysfunction occurring after CCH. It may also improve impairment of the long-term potentiation, field excitable potential, synaptic transmission, and the transmission synchronization of neural circuit signals between the entorhinal cortex and hippocampal CA1. EGB761 may also reverse the inhibition of neural activity and the degeneration of dendritic spines and synaptic structure after CCH; it also prevents the downregulation of synaptic proteins molecules and pathways related to the formation and stability of dendritic spines structures. EGB761 may inhibit axon demyelination and ameliorate the inhibition of the mTOR signaling pathway after CCH to improve protein synthesis. In conclusion, EGB761 treatment after CCH may improve spatial cognitive function by ameliorating synaptic plasticity impairment, synapse degeneration, and axon demyelination by rectifying the inhibition of the mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Xiao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Feng Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Chun Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun-Hua Mei
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Zheng Y, Zhang J, Zhao Y, Zhang Y, Zhang X, Guan J, Liu Y, Fu J. Curcumin protects against cognitive impairments in a rat model of chronic cerebral hypoperfusion combined with diabetes mellitus by suppressing neuroinflammation, apoptosis, and pyroptosis. Int Immunopharmacol 2021; 93:107422. [PMID: 33548579 DOI: 10.1016/j.intimp.2021.107422] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is regarded as a high-risk factor for cognitive decline in vascular dementia (VaD). We have previously shown that diabetes mellitus (DM) synergistically promotes CCH-induced cognitive dysfunction via exacerbating neuroinflammation. Furthermore, curcumin has been shown to exhibit anti-inflammatory and neuroprotective activities. However, the effects of curcumin on CCH-induced cognitive impairments in DM have remained unknown. METHODS Rats were fed with a high-fat diet (HFD) and injected with low-dose streptozotocin (STZ), followed by bilateral common carotid artery occlusion (BCCAO), to model DM and CCH in vivo. After BCCAO, curcumin (50 mg/kg) was administered intraperitoneally every two days for eight weeks to evaluate its therapeutic effects. Additionally, mouse BV2 microglial cells were exposed to hypoxia and high glucose to model CCH and DM pathologies in vitro. RESULTS Curcumin treatment significantly improved DM/CCH-induced cognitive deficits and attenuated neuronal cell death. Molecular analysis revealed that curcumin exerted protective effects via suppressing neuroinflammation induced by microglial activation, regulating the triggering receptor expressed on myeloid cells 2 (TREM2)/toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway, alleviating apoptosis, and reducing nod-like receptor protein 3 (NLRP3)-dependent pyroptosis. CONCLUSIONS Taken together, our findings suggest that curcumin represents a promising therapy for DM/CCH-induced cognitive impairments.
Collapse
Affiliation(s)
- Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Liu
- Department of Medicine, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
18
|
Bang J, Jeon WK. Mumefural Improves Blood Flow in a Rat Model of FeCl 3-Induced Arterial Thrombosis. Nutrients 2020; 12:nu12123795. [PMID: 33322041 PMCID: PMC7763683 DOI: 10.3390/nu12123795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Mumefural (MF), a bioactive component of the processed fruit of Prunus mume Sieb. et Zucc, is known to inhibit platelet aggregation induced by agonists in vitro. In this study, we investigated the anti-thrombotic effects of MF using a rat model of FeCl3-induced arterial thrombosis. Sprague–Dawley rats were intraperitoneally injected with MF (0.1, 1, or 10 mg/kg) 30 min before 35% FeCl3 treatment to measure the time to occlusion using a laser Doppler flowmeter and to assess the weight of the blood vessels containing thrombus. MF treatment significantly improved blood flow by inhibiting occlusion and thrombus formation. MF also prevented collagen fiber damage in injured vessels and inhibited the expression of the platelet activation-related proteins P-selectin and E-selectin. Moreover, MF significantly reduced the increased inflammatory signal of nuclear factor (NF)-κB, toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in blood vessels. After administration, MF was detected in the plasma samples of rats with a bioavailability of 36.95%. Therefore, we suggest that MF may improve blood flow as a candidate component in dietary supplements for improving blood flow and preventing blood circulation disorders.
Collapse
Affiliation(s)
- Jihye Bang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-2-958-6992
| |
Collapse
|
19
|
Kim J, Han M, Jeon WK. Acute and Subacute Oral Toxicity of Mumefural, Bioactive Compound Derived from Processed Fruit of Prunus mume Sieb. et Zucc., in ICR Mice. Nutrients 2020; 12:E1328. [PMID: 32392766 PMCID: PMC7284477 DOI: 10.3390/nu12051328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Mumefural is a bioactive compound derived from the processed fruit of Prunus mume Sieb. et Zucc., a traditional health food; however, its safety has not been evaluated. We investigated the toxicity of mumefural through single and repeated oral administration at doses of 1250, 2500, and 5000 mg/kg in Institute of Cancer Research (ICR) mice. The acute toxicity assessment was not associated with adverse effects or death. Similarly, the subacute (four weeks) toxicity assessment did not reveal any mumefural-associated mortality, abnormal organ damage, or altered clinical signs, body weight, food consumption, or hematological parameters. However, albumin/globulin ratio and chloride ion levels were significantly increased in male mice treated with mumefural at ≥ 2500 mg/kg. Female mice exhibited significantly higher levels of chloride, sodium, and potassium ions, at a dose of 5000 mg/kg. Furthermore, the administration of 2500 and 5000 mg/kg mumefural decreased the absolute weight of spleen in male mice. These findings indicated that the approximate lethal dose of mumefural in ICR mice was > 5000 mg/kg. No significant mumefural toxicity was observed at ≤ 5000 mg/kg. Our findings provide a basis for conducting future detailed studies to evaluate reproductive, neurological, genetic, and chronic toxicity of mumefural.
Collapse
Affiliation(s)
- Jungim Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Daejeon 34054, Korea; (J.K.); (M.H.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Mira Han
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Daejeon 34054, Korea; (J.K.); (M.H.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Daejeon 34054, Korea; (J.K.); (M.H.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|