1
|
Valeanu A, Margina D, Weber D, Stuetz W, Moreno-Villanueva M, Dollé MET, Jansen EH, Gonos ES, Bernhardt J, Grubeck-Loebenstein B, Weinberger B, Fiegl S, Sikora E, Mosieniak G, Toussaint O, Debacq-Chainiaux F, Capri M, Garagnani P, Pirazzini C, Bacalini MG, Hervonen A, Slagboom PE, Talbot D, Breusing N, Frank J, Bürkle A, Franceschi C, Grune T, Gradinaru D. Development and validation of cardiometabolic risk predictive models based on LDL oxidation and candidate geromarkers from the MARK-AGE data. Mech Ageing Dev 2024; 222:111987. [PMID: 39284459 DOI: 10.1016/j.mad.2024.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The predictive value of the susceptibility to oxidation of LDL particles (LDLox) in cardiometabolic risk assessment is incompletely understood. The main objective of the current study was to assess its relationship with other relevant biomarkers and cardiometabolic risk factors from MARK-AGE data. A cross-sectional observational study was carried out on 1089 subjects (528 men and 561 women), aged 40-75 years old, randomly recruited age- and sex-stratified individuals from the general population. A correlation analysis exploring the relationships between LDLox and relevant biomarkers was undertaken, as well as the development and validation of several machine learning algorithms, for estimating the risk of the combined status of high blood pressure and obesity for the MARK-AGE subjects. The machine learning models yielded Area Under the Receiver Operating Characteristic Curve Score ranging 0.783-0.839 for the internal validation, while the external validation resulted in an Under the Receiver Operating Characteristic Curve Score between 0.648 and 0.787, with the variables based on LDLox reaching significant importance within the obtained predictions. The current study offers novel insights regarding the combined effects of LDL oxidation and other ageing markers on cardiometabolic risk. Future studies might be extended on larger patient cohorts, in order to obtain reproducible clinical assessment models.
Collapse
Affiliation(s)
- Andrei Valeanu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania.
| | - Denisa Margina
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal 14558, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14458, Germany.
| | - Wolfgang Stuetz
- Department of Food Biofunctionality, Institute of Nutritional Sciences (140), University of Hohenheim, Stuttgart 70599, Germany.
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz 78457, Germany; Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz 78457, Germany.
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Eugène Hjm Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece.
| | | | - Beatrix Grubeck-Loebenstein
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, Innsbruck 6020, Austria.
| | - Birgit Weinberger
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10, Innsbruck 6020, Austria.
| | - Simone Fiegl
- UMIT TIROL - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol 6060, Austria.
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, Warsaw 02-093, Poland.
| | - Grazyna Mosieniak
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, Warsaw 02-093, Poland.
| | - Olivier Toussaint
- URBC-NARILIS, University of Namur, Rue de Bruxelles, 61, Namur, Belgium
| | | | - Miriam Capri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy.
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy.
| | | | - Antti Hervonen
- Medical School, University of Tampere, Tampere 33014, Finland.
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Duncan Talbot
- Department of Unilever Science and Technology, Beauty and Personal Care, Sharnbrook, UK.
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Germany.
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences (140), University of Hohenheim, Stuttgart 70599, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz 78457, Germany.
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy; Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod 603005, Russia.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal 14558, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14458, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin 13347, Germany; University of Potsdam, Institute of Nutritional Science, Nuthetal 14458, Germany; University of Vienna, Department of Physiological Chemistry, Faculty of Chemistry, Vienna 1090, Austria.
| | - Daniela Gradinaru
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., Bucharest 020956, Romania; Ana Aslan National Institute of Gerontology and Geriatrics, Bucharest, Romania.
| |
Collapse
|
2
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Abstract
Over the course of a human lifespan, genome integrity erodes, leading to an increased abundance of several types of chromatin changes. The abundance of DNA lesions (chemical perturbations to nucleotides) increases with age, as does the number of genomic mutations and transcriptional disruptions caused by replication or transcription of those lesions, respectively. At the epigenetic level, precise DNA methylation patterns degrade, likely causing increasingly stochastic variations in gene expression. Similarly, the tight regulation of histone modifications begins to unravel. The genomic instability caused by these mechanisms allows transposon element reactivation and remobilization, further mutations, gene dysregulation, and cytoplasmic chromatin fragments. This cumulative genomic instability promotes cell signaling events that drive cell fate decisions and extracellular communications known to disrupt tissue homeostasis and regeneration. In this Review, we focus on age-related epigenetic changes and their interactions with age-related genomic changes that instigate these events.
Collapse
Affiliation(s)
- Carolina Soto-Palma
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Christopher D. Faulk
- Institute on the Biology of Aging and Metabolism
- Department of Animal Science, and
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Piacenza F, Giacconi R, Costarelli L, Basso A, Bürkle A, Moreno-Villanueva M, Dollé MET, Jansen E, Grune T, Weber D, Stuetz W, Gonos ES, Schön C, Bernhardt J, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Franceschi C, Capri M, Hervonen A, Hurme M, Slagboom E, Breusing N, Mocchegiani E, Malavolta M. Age, sex and BMI influence on copper, zinc and their major serum carrier proteins in a large European population including Nonagenarian Offspring from MARK-AGE study. J Gerontol A Biol Sci Med Sci 2021; 76:2097-2106. [PMID: 33983441 DOI: 10.1093/gerona/glab134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 11/12/2022] Open
Abstract
The analysis of copper (Cu) and zinc (Zn) along with their major serum carriers, albumin (Alb) and ceruloplasmin (Cp), could provide information on the capacity of humans to maintain homeostasis of metals (metallostasis). However, their relationship with aging, sex, BMI, as well as with nutritional and inflammatory markers was never investigated in a large-scale study. Here, we report results from the European large-scale cross-sectional study MARK-AGE in which Cu, Zn, Alb, Cp as well as nutritional and inflammatory parameters were determined in 2424 age-stratified subjects (35-75 years) including the general population (RASIG), nonagenarian offspring (GO), a well-studied genetic model of longevity, and spouses of GO (SGO). In RASIG, Cu to Zn ratio and Cp to Alb ratio were higher in women than in men. Both ratios increased with aging because Cu and Cp increased and Alb and Zn decreased. Cu, Zn, Alb and Cp were found associated with several inflammatory as well as nutritional biomarkers.GO showed higher Zn levels and higher Zn to Alb ratio compared to RASIG, but we did not observe significant differences with SGO, likely as a consequence of the low sample size of SGO and the shared environment. Our results show that aging, sex, BMI and GO status are characterized by different levels of Cu, Zn and their serum carrier proteins. These data and their relationship with inflammatory biomarkers support the concept that loss of metallostasis is a characteristic of inflammaging.
Collapse
Affiliation(s)
- Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Andrea Basso
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.,Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | | | | | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Toussaint
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | | | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia. Lobachevsky State University of Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.CIG-Interdepartmental Center "L. Galvani", Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Mikko Hurme
- Medical School, University of Tampere, Tampere, Finland
| | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Eugenio Mocchegiani
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
5
|
Cassotta M, Forbes-Hernandez TY, Cianciosi D, Elexpuru Zabaleta M, Sumalla Cano S, Dominguez I, Bullon B, Regolo L, Alvarez-Suarez JM, Giampieri F, Battino M. Nutrition and Rheumatoid Arthritis in the 'Omics' Era. Nutrients 2021; 13:763. [PMID: 33652915 PMCID: PMC7996781 DOI: 10.3390/nu13030763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Modern high-throughput 'omics' science tools (including genomics, transcriptomics, proteomics, metabolomics and microbiomics) are currently being applied to nutritional sciences to unravel the fundamental processes of health effects ascribed to particular nutrients in humans and to contribute to more precise nutritional advice. Diet and food components are key environmental factors that interact with the genome, transcriptome, proteome, metabolome and the microbiota, and this life-long interplay defines health and diseases state of the individual. Rheumatoid arthritis (RA) is a chronic autoimmune disease featured by a systemic immune-inflammatory response, in genetically susceptible individuals exposed to environmental triggers, including diet. In recent years increasing evidences suggested that nutritional factors and gut microbiome have a central role in RA risk and progression. The aim of this review is to summarize the main and most recent applications of 'omics' technologies in human nutrition and in RA research, examining the possible influences of some nutrients and nutritional patterns on RA pathogenesis, following a nutrigenomics approach. The opportunities and challenges of novel 'omics technologies' in the exploration of new avenues in RA and nutritional research to prevent and manage RA will be also discussed.
Collapse
Affiliation(s)
- Manuela Cassotta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Tamara Y. Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
| | - Maria Elexpuru Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Sandra Sumalla Cano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Irma Dominguez
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (M.C.); (M.E.Z.); (S.S.C.); (I.D.)
| | - Beatriz Bullon
- Department of Periodontology, Dental School, University of Sevilla, 41004 Sevilla, Spain;
| | - Lucia Regolo
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
| | - Josè Miguel Alvarez-Suarez
- AgroScience & Food Research Group, Universidad de Las Américas, Quito 170125, Ecuador;
- King Fahd Medical Research Center, King Abdulaziz University, Jedda 21589, Saudi Arabia
| | - Francesca Giampieri
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy; (D.C.); (L.R.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|