1
|
Idaguko CA, Agoreyo G. Effect of Wheat ( Triticum aestivum Linn.) Diet on the Testes of Sprague-Dawley Rats. Balkan Med J 2024; 41:404-406. [PMID: 38984549 DOI: 10.4274/balkanmedj.galenos.2024.2024-2-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Affiliation(s)
- Chika Anna Idaguko
- Department of Anatomy, Faculty of Basic Medical Sciences, Edo State University Uzairue, Edo State, Nigeria
| | - Gladys Agoreyo
- Department of Anatomy, Faculty of Basic Medical Sciences, Edo State University Uzairue, Edo State, Nigeria
| |
Collapse
|
2
|
James D, Poveda C, Walton GE, Elmore JS, Linden B, Gibson J, Griffin BA, Robertson MD, Lewis MC. Do high-protein diets have the potential to reduce gut barrier function in a sex-dependent manner? Eur J Nutr 2024; 63:2035-2054. [PMID: 38662018 PMCID: PMC11377480 DOI: 10.1007/s00394-024-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification. METHODS Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supplemented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and ELISA. RESULTS Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides (p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein interactions affecting bacterial populations and metabolites (p < 0.005). CONCLUSIONS Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein source and the donor's sex. Should these results be confirmed through human studies, they could have major implications for developing dietary recommendations tailored by sex to prevent chronic illnesses.
Collapse
Affiliation(s)
- Daniel James
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK.
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Brandon Linden
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - John Gibson
- Food and Feed Innovations, Woodstock, Newcastle Rd, Woore, N Shropshire, CW3 95N, UK
| | - Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - M Denise Robertson
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Marie C Lewis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| |
Collapse
|
3
|
Lim SM, Choo JM, Li H, O’Rielly R, Carragher J, Rogers GB, Searle I, Robertson SA, Page AJ, Muhlhausler B. A High Amylose Wheat Diet Improves Gastrointestinal Health Parameters and Gut Microbiota in Male and Female Mice. Foods 2021; 10:foods10020220. [PMID: 33494480 PMCID: PMC7911791 DOI: 10.3390/foods10020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/02/2023] Open
Abstract
High amylose wheat (HAW) contains more resistant starch than standard amylose wheat (SAW) and may have beneficial effects on gastrointestinal health. However, it is currently unclear whether these effects differ according to the level of HAW included in the diet or between males and females. Male and female C57BL/6 mice (n = 8/group/sex) were fed SAW65 (65% SAW; control), HAW35 (35% HAW), HAW50 (50% HAW) or HAW65 (65% HAW) diet for eight weeks. Female but not male, mice consuming any amount of HAW exhibited accelerated gastric emptying compared to SAW65 group. In both sexes, relative colon weights were higher in the HAW65 group compared to SAW65 group and in females, relative weights of the small intestine and cecum were also higher in the HAW65 group. In females only, colonic expression of Pyy and Ocln mRNAs were higher in the HAW65 group compared to HAW35 and HAW50 groups. In both sexes, mice consuming higher amounts of HAW (HAW50 or HAW65) had increased fecal bacterial load and relative abundance of Bacteroidetes phylum and reduced relative abundance of Firmicutes compared to SAW65 group. These data are consistent with a beneficial impact of HAW on gastrointestinal health and indicate dose-dependent and sex-specific effects of HAW consumption.
Collapse
Affiliation(s)
- See Meng Lim
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Jocelyn M. Choo
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Hui Li
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - Rebecca O’Rielly
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - John Carragher
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
| | - Geraint B. Rogers
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia;
| | - Sarah A. Robertson
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide 5000, Australia
| | - Amanda J. Page
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - Beverly Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-08-8305-0697
| |
Collapse
|