1
|
Zou T, Xie R, Huang S, Lu D, Liu J. Potential role of modulating autophagy levels in sensorineural hearing loss. Biochem Pharmacol 2024; 222:116115. [PMID: 38460910 DOI: 10.1016/j.bcp.2024.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.
Collapse
Affiliation(s)
- Ting Zou
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renwei Xie
- Department of Otorhinolaryngology, Renhe Hospital, Baoshan District, Shanghai, China
| | - Sihan Huang
- Department of Otorhinolaryngology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dingkun Lu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Reynard P, Thai-Van H. Drug-induced hearing loss: Listening to the latest advances. Therapie 2024; 79:283-295. [PMID: 37957052 DOI: 10.1016/j.therap.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
Sensorineural hearing loss (SNHL) is the most common type of hearing loss. Causes include degenerative changes in the sensory hair cells, their synapses and/or the cochlear nerve. As human inner ear hair cells have no capacity for regeneration, their destruction is irreversible and leads to permanent hearing loss. SNHL can be genetically inherited or acquired through ageing, exposure to noise or ototoxic drugs. Ototoxicity generally refers to damage to the structures and functions of the inner ear following exposure to specific drugs. Ototoxicity can be multifactorial, causing damage to cochlear hair cells or cells with homeostatic functions that modulate cochlear hair cell function. Clinical strategies to limit ototoxicity include identifying patients at risk, monitoring drug concentrations, performing serial hearing assessments and switching to less ototoxic therapy. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using the PubMed® database. The search terms "ototoxicity", "hearing loss" and "drugs" were combined. We included studies published between September 2013 and June 2023, and focused on medicines and drugs used in hospitals. The review highlighted a number of articles reporting the main drug classes potentially involved: namely, immunosuppressants, antimalarials, vaccines, antibiotics, antineoplastic agents, diuretics, nonsteroidal anti-inflammatory drugs and analgesics. The presumed ototoxic mechanisms were described, together with the therapeutic and preventive options developed over the last ten years.
Collapse
Affiliation(s)
- Pierre Reynard
- Service d'audiologie & explorations oto-neurologiques, hospices civils de Lyon, hôpital Edouard-Herriot & hôpital Femme Mère-Enfant, 69000 Lyon, France; Institut Pasteur, Institut de l'Audition, Center for Research and Innovation in Human Audiology, 75000 Paris, France; Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Hung Thai-Van
- Service d'audiologie & explorations oto-neurologiques, hospices civils de Lyon, hôpital Edouard-Herriot & hôpital Femme Mère-Enfant, 69000 Lyon, France; Institut Pasteur, Institut de l'Audition, Center for Research and Innovation in Human Audiology, 75000 Paris, France; Université Claude Bernard Lyon 1, 69622 Villeurbanne, France.
| |
Collapse
|
3
|
Collignon TE, Webber K, Piasecki J, Rahman ASW, Mondal A, Barbalho SM, Bishayee A. Avocado ( Persea americana Mill) and its phytoconstituents: potential for cancer prevention and intervention. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37830928 DOI: 10.1080/10408398.2023.2260474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Dietary compounds, including fruits, vegetables, nuts, and spices, have been shown to exhibit anticancer properties due to their high concentrations of vitamins, minerals, fiber, and secondary metabolites, known as phytochemicals. Although emerging studies suggest that avocado (Persea americana Mill) displays antineoplastic properties in addition to numerous other health benefits, current literature lacks an updated comprehensive systematic review dedicated to the anticancer effects of avocado. This review aims to explore the cancer-preventive effects of avocados and the underlying molecular mechanisms. The in vitro studies suggest the various avocado-derived products and phytochemicals induced cytotoxicity, reduced cell viability, and inhibited cell proliferation. The in vivo studies revealed reduction in tumor number, size, and volume as well. The clinical studies demonstrated that avocado leaf extract increased free oxygen radical formation in larynx carcinoma tissue. Various avocado products and phytochemicals from the avocado fruit, including avocatin-B, persin, and PaDef defensin, may serve as viable cancer prevention and treatment options based on current literature. Despite many favorable outcomes, past research has been limited in scope, and more extensive and mechanism-based in vivo and randomized clinical studies should be performed before avocado-derived bioactive phytochemicals can be developed as cancer preventive agents.
Collapse
Affiliation(s)
- Taylor E Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Josh Piasecki
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Austin S W Rahman
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
4
|
Effects of Three Extraction Methods on Avocado Oil Lipid Compounds Analyzed via UPLC-TOF-MS/MS with OPLS-DA. Foods 2023; 12:foods12061174. [PMID: 36981101 PMCID: PMC10048627 DOI: 10.3390/foods12061174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Avocado oil is excellent functional oil. Effects of three extraction methods (squeezing extraction, supercritical carbon dioxide extraction, and aqueous extraction) on the species, composition, and contents of lipids in avocado oil were analyzed via ultra-performance liquid chromatography–time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS), and the differential components of lipids were revealed by OrthogonalPartialLeast Squares-DiscriminantAnalysis (OPLS-DA), S-plot combined with variable importance in the projection (VIP). The results showed that the fatty acid composition of avocado oil mainly consisted of oleic acid (36–42%), palmitic acid (25–26%), linoleic acid (14–18%), and palmitoleic acid (10–12%). A total of 134 lipids were identified first from avocado oil, including 122 glycerides and 12 phospholipids, and the total number of carbon atoms contained in the fatty acid side chains of the lipids was 32–68, and the number of double bonds was 0–9. Forty-eight differential lipid compounds with significant effects of the three extraction methods on the lipid composition of avocado oil were excavated, among which the differences in triglycerides (TG), phosphatidylethanol (PEtOH), and phosphatidylmethanol (PMeOH) contents were highly significant, which provided basic data to support the subsequent guidance of avocado oil processing, quality evaluation, and functional studies.
Collapse
|
5
|
Avocado Seeds-Mediated Alleviation of Cyclosporine A-Induced Hepatotoxicity Involves the Inhibition of Oxidative Stress and Proapoptotic Endoplasmic Reticulum Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227859. [PMID: 36431959 PMCID: PMC9698978 DOI: 10.3390/molecules27227859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Previous studies reported disrupted hepatic function and structure following the administration of cyclosporine A (CsA) in humans and animals. Recently, we found that avocado seeds (AvS) ameliorated CsA-induced nephrotoxicity in rats. As a continuation, herein we checked whether AvS could also attenuate CsA-induced hepatotoxicity in rats. Subcutaneous injection of CsA (5 mg/kg) for 7 days triggered hepatotoxicity in rats, as indicated by liver dysfunction, redox imbalance, and histopathological changes. Oral administration of 5% AvS powder for 4 weeks ameliorated CsA-induced hepatotoxicity, as evidenced by (1) decreased levels of liver damage parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and bilirubin), (2) resumed redox balance in the liver (reduced malondialdehyde (MDA) and increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), (3) downregulated hepatic expression of endoplasmic reticulum (ER) stress-related genes (X-box binding protein 1 (XBP1), binding immunoglobulin protein (BIP), C/EBP homologous protein (CHOP)), and apoptosis-related genes (Bax and Casp3), (4) upregulated expression of the anti-apoptotic gene Bcl2, (5) reduced DNA damage, and (6) improved liver histology. These results highlight the ability of AvS to ameliorate CsA-induced hepatotoxicity via the inhibition of oxidative stress and proapoptotic ER stress.
Collapse
|
6
|
Lee CH, Lee SM, Kim SY. Telmisartan Attenuates Kanamycin-Induced Ototoxicity in Rats. Int J Mol Sci 2021; 22:ijms222312716. [PMID: 34884516 PMCID: PMC8657567 DOI: 10.3390/ijms222312716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
Telmisartan (TM) has been proposed to relieve inflammatory responses by modulating peroxisome proliferator activator receptor-γ (PPARγ) signaling. This study aimed to investigate the protective effects of TM on kanamycin(KM)-induced ototoxicity in rats. Forty-eight, 8-week-old female Sprague Dawley rats were divided into four groups: (1) control group, (2) TM group, (3) KM group, and (4) TM + KM group. Auditory brainstem response was measured. The histology of the cochlea was examined. The protein expression levels of angiotensin-converting enzyme 2 (ACE2), HO1, and PPARγ were measured by Western blotting. The auditory threshold shifts at 4, 8, 16, and 32 kHz were lower in the TM + KM group than in the KM group (all p < 0.05). The loss of cochlear outer hair cells and spiral ganglial cells was lower in the TM + KM group than in the KM group. The protein expression levels of ACE2, PPARγ, and HO1 were higher in the KM group than in the control group (all p < 0.05). The TM + KM group showed lower expression levels of PPARγ and HO1 than the KM group.TM protected the cochlea from KM-induced injuries in rats. TM preserved hearing levels and attenuated the increase in PPARγ and HO1 expression levels in KM-exposed rat cochleae.
Collapse
|
7
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
8
|
Li Y, Li A, Wang C, Jin X, Zhang Y, Lu L, Wang SL, Gao X. The Ganglioside Monosialotetrahexosylganglioside Protects Auditory Hair Cells Against Neomycin-Induced Cytotoxicity Through Mitochondrial Antioxidation: An in vitro Study. Front Cell Neurosci 2021; 15:751867. [PMID: 34646124 PMCID: PMC8502895 DOI: 10.3389/fncel.2021.751867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Neomycin is a common ototoxic aminoglycoside antibiotic that causes sensory hearing disorders worldwide, and monosialotetrahexosylganglioside (GM1) is reported to have antioxidant effects that protect various cells. However, little is known about the effect of GM1 on neomycin-induced hair cell (HC) ototoxic damage and related mechanism. In this study, cochlear HC-like HEI-OC-1 cells along with whole-organ explant cultures were used to establish an in vitro neomycin-induced HC damage model, and then the apoptosis rate, the balance of oxidative and antioxidant gene expression, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were measured. GM1 could maintain the balance of oxidative and antioxidant gene expression, inhibit the accumulation of ROS and proapoptotic gene expression, promoted antioxidant gene expression, and reduce apoptosis after neomycin exposure in HEI-OC-1 cells and cultured cochlear HCs. These results suggested that GM1 could reduce ROS aggregation, maintain mitochondrial function, and improve HC viability in the presence of neomycin, possibly through mitochondrial antioxidation. Hence, GM1 may have potential clinical value in protecting against aminoglycoside-induced HC injury.
Collapse
Affiliation(s)
- Yujin Li
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing, China.,Department of Otolaryngology-Head and Neck Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Ao Li
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chao Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Jin
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yaoting Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Ling Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shou-Lin Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
9
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
10
|
Cervantes-Paz B, Yahia EM. Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Compr Rev Food Sci Food Saf 2021; 20:4120-4158. [PMID: 34146454 DOI: 10.1111/1541-4337.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Avocado is a subtropical/tropical fruit with creamy texture, peculiar flavor, and high nutritional value. Due to its high oil content, a significant quantity of avocado fruit is used for the production of oil using different methods. Avocado oil is rich in lipid-soluble bioactive compounds, but their content depends on different factors. Several phytochemicals in the oil have been linked to prevention of cancer, age-related macular degeneration, and cardiovascular diseases and therefore have generated an increase in consumer demand for avocado oil. The aim of this review is to critically and systematically analyze the worldwide production and commercialization of avocado oil, its extraction methods, changes in its fat-soluble phytochemical content, health benefits, and new trends and applications. There is a lack of information on the production and commercialization of the different types of avocado oil, but there are abundant data on extraction methods using solvents, centrifugation-assisted aqueous extraction, mechanical extraction by cold pressing (varying concentration and type of enzymes, temperature and time of reaction, and dilution ratio), ultrasound-assisted extraction, and supercritical fluid to enhance the yield and quality of oil. Extensive information is available on the content of fatty acids, although it is limited on carotenoids and chlorophylls. The effect of avocado oil on cancer, diabetes, and cardiovascular diseases has been demonstrated through in vitro and animal studies, but not in humans. Avocado oil continues to be of interest to the food, pharmaceutical, and cosmetic industries and is also generating increased attention in other areas including structured lipids, nanotechnology, and environmental care.
Collapse
Affiliation(s)
- Braulio Cervantes-Paz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México.,Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México
| |
Collapse
|
11
|
Effects of Moringa Extract on Aminoglycoside-Induced Hair Cell Death and Organ of Corti Damage. Otol Neurotol 2021; 42:1261-1268. [PMID: 34049329 DOI: 10.1097/mao.0000000000003193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Moringa extract, a naturally occurring anti-oxidant, protects against aminoglycoside-induced hair cell death and hearing loss within the organ of Corti. BACKGROUND Reactive oxygen species (ROS) arise primarily in the mitochondria and have been implicated in aminoglycoside-induced ototoxicity. Mitochondrial dysfunction results in loss of membrane potential, release of caspases, and cell apoptosis. Moringa extract has not previously been examined as a protective agent for aminoglycoside-induced ototoxicity. METHODS Putative otoprotective effects of moringa extract were investigated in an organotypic model using murine organ of Corti explants subjected to gentamicin-induced ototoxicity. Assays evaluated hair cell loss, cytochrome oxidase expression, mitochondrial membrane potential integrity, and caspase activity. RESULTS In vitro application of moringa conferred significant protection from gentamicin-induced hair cell loss at dosages from 25 to 300 μg/mL, with dosages above 100 μg/mL conferring near complete protection. Assays demonstrated moringa extract suppression of ROS, preservation of cytochrome oxidase activity, and reduction in caspase production. CONCLUSION Moringa extract demonstrated potent antioxidant properties with significant protection against gentamicin ototoxicity in cochlear explants.
Collapse
|
12
|
Luan Y, Wang N, Li C, Guo X, Lu A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics (Basel) 2020; 9:E787. [PMID: 33171809 PMCID: PMC7695002 DOI: 10.3390/antibiotics9110787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/18/2023] Open
Abstract
Antibiotic abuse is becoming increasingly serious and the potential for harm to human health and the environment has aroused widespread social concern. Aminoglycoside antibiotics (AGs) are broad-spectrum antibiotics that have been widely used in clinical and animal medicine. Consequently, their residues are commonly found in animal-derived food items and the environment. A simple, rapid, and sensitive detection method for on-site screening and detection of AGs is urgently required. In recent years, with the development of molecular detection technology, nucleic acid aptamers have been successfully used as recognition molecules for the identification and detection of AGs in food and the environment. These aptamers have high affinities, selectivities, and specificities, are inexpensive, and can be produced with small batch-to-batch differences. This paper reviews the applications of aptamers for AG detection in colorimetric, fluorescent, chemiluminescent, surface plasmon resonance, and electrochemical sensors for the analysis in food and environmental samples. This study provides useful references for future research.
Collapse
Affiliation(s)
- Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Nan Wang
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Cheng Li
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Xiaojun Guo
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Anxiang Lu
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| |
Collapse
|