1
|
Xu W, Xu J, Huang D, Wang C, Song J, Chen X, Suo H. Acne vulgaris: advances in pathogenesis and prevention strategies. Eur J Clin Microbiol Infect Dis 2025:10.1007/s10096-024-04984-8. [PMID: 39815129 DOI: 10.1007/s10096-024-04984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 01/18/2025]
Abstract
PURPOSE The aim is to encourage the creation of innovative prevention and treatment measures and to help readers in selecting the most effective ones. BACKGROUND Acne vulgaris is the most prevalent skin condition of adolescents, affecting approximately 9% of the global population. Patients become more prone to mental and psychological problems because of it. Several strategies have been established to effectively improve acne vulgaris. However, the complexity of its pathogenesis and the limitations of the existing strategies to control it in terms of bacterial resistance, patient compliance, and safety have made the development of new control strategies a hot topic in skin health research. RESULTS This review systematically summarizes the pathogenesis and prevention strategies of acne vulgaris according to the most recent studies. The limitations of the current research on acne vulgaris and future research directions are presented based on the analysis of the strengths and weaknesses of the existing prevention and treatment strategies.
Collapse
Affiliation(s)
- Weiping Xu
- College of Food Science, Southwest University, Chongqing, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing, China
| | - Dandan Huang
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China.
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China.
- Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Lee MK, Jeong HH, Kim MJ, Seo JS, Hwang JY, Jung WK, Moon KM, Lee I, Lee B. The Beneficial Roles of Sargassum spp. in Skin Disorders. J Med Food 2024; 27:359-368. [PMID: 38526569 DOI: 10.1089/jmf.2023.k.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
As the body's largest organ, the skin is located at the internal and external environment interface, serving as a line of defense against various harmful stressors. Recently, marine-derived physiologically active ingredients have attracted considerable attention in the cosmeceutical industry due to their beneficial effects on skin health. Sargassum, a genus of brown macroalgae, has traditionally been consumed as food and medicine in several countries and is rich in bioactive compounds such as meroterpenoids, sulfated polysaccharides, fucoidan, fucoxanthin, flavonoids, and terpenoids. Sargassum spp. have various beneficial effects on skin disorders. They help with atopic dermatitis by improving skin barrier protection and reducing inflammation. Several species show potential in treating acne by inhibiting bacterial growth and reducing inflammation. Some species, such as Sargassum horneri, demonstrate antiallergic effects by modulating mast cell activity. Certain Sargassum species exhibit anticancer activity by inhibiting tumor growth and promoting apoptosis, and some species help with wound healing by promoting angiogenesis and reducing oxidative stress. Overall, Sargassum spp. demonstrate potential for treating and managing various skin conditions. Therefore, the bioactive compounds of Sargassum spp. may be natural ingredients with a wide range of functional properties for preventing and treating skin disorders. The present review focused on the various biological effects of Sargassum extracts and derived compounds on skin disorders.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Jae Seong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Incheol Lee
- Department of Ocean Engineering, Pukyong National University, Busan, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
3
|
Zhang W, He Z, Qin Y, Gong J, Xie W, Tong L, Liu S, Xie L. 5-aminolevulinic acid photodynamic therapy using 560-1200 nm followed by 420-1200 nm broadband light in the treatment of moderate-to-severe acne. Photodiagnosis Photodyn Ther 2023; 44:103902. [PMID: 37984524 DOI: 10.1016/j.pdpdt.2023.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Moderate-to-severe acne vulgaris, which is a chronic inflammatory skin disease, seriously impacts millions of people. However, traditional therapies may cause severe adverse reactions that are unacceptable to many patients, thus limiting the further application of these therapies. Novel therapeutic approaches to effectively treat moderate-to-severe acne vulgaris with minimal adverse reactions are urgently needed. In this retrospective study, we investigated the efficacy and adverse reactions of photodynamic therapy (PDT) using 560-1200 nm followed by 420-1200 nm broadband light (BBL). METHODS Twenty-four patients with moderate-to-severe acne vulgaris were included in the study and all patients expressed a strong desire for beauty. After aminolevulinic acid (ALA) gel applied, the entire face was sequentially irradiated by using BBL with a 560 nm cut-off filter (560-1200 nm), followed by BBL with a 420 nm cut-off filter (420-1200 nm). The clinical efficacy was evaluated by the proportion of patients achieving cured response and excellent response (effective rate), based on the percentage of lesions reduction (treatment rate). The fluorescent images and photographs of acne vulgaris were recorded. Pain and other common local adverse reactions during the treatment were also recorded and evaluated. RESULTS In patients with moderate acne, the mean treatment rates were 57.74 ± 16.40 (%) and 87.40 ± 8.521 (%) at the 6th week and 12th week of treatment, respectively. In patients with severe acne, the mean treatment rates were 60.95 ± 12.06 (%) and 85.04 ± 9.115 (%) at the 6th week and 12th week of treatment, respectively. At the 6th and 12th weeks of treatment, the effective rates of patients were 20.00 % and 93.33 % in patients with moderate acne, and 0.000 % and 88.89 % in patients with severe acne, respectively. Pain scores were significantly higher in patients with severe acne compared to patients with moderate acne when receiving 560-1200 nm BBL-PDT. Additionally, patients when receiving 420-1200 nm BBL-PDT exhibited significantly higher pain scores than those when receiving 560-1200 nm BBL-PDT. The degree of erythema was more severe in patients with severe acne than in those with moderate acne. The pigmentation was observed in one patient with moderate acne and one patient with severe acne. CONCLUSION The 560-1200 nm and 420-1200 nm BBL-PDT therapy can effectively treat moderate-to-severe acne vulgaris with tolerable adverse reactions, providing a new option for patients with higher esthetic requirements.
Collapse
Affiliation(s)
- Weinan Zhang
- Department of Dermatology, The 958th Army Hospital of the Chinese People's Liberation Army (Army medical university), Chongqing 400020, China
| | - Zhiqiang He
- Chongqing Contemporary Plastic Surgery Hospital, Chongqing 400020, China
| | - Yingyue Qin
- Department of Dermatology, The 958th Army Hospital of the Chinese People's Liberation Army (Army medical university), Chongqing 400020, China
| | - Jie Gong
- School of Clinical Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenjun Xie
- Chongqing Yucai secondary School, Chongqing 400050, China
| | - Li Tong
- Pulmonary and Critical Care Medicine, Loudi Central Hospital, Loudi, Hunan 417000, China
| | - Shulei Liu
- Department of Dermatology, The 958th Army Hospital of the Chinese People's Liberation Army (Army medical university), Chongqing 400020, China.
| | - Luoyingzi Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing 400020, China.
| |
Collapse
|
4
|
Wang J, Luo Y, Wang Z, Hounye AH, Cao C, Hou M, Zhang J. A cell phone app for facial acne severity assessment. APPL INTELL 2023; 53:7614-7633. [PMID: 35919632 PMCID: PMC9336136 DOI: 10.1007/s10489-022-03774-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
Abstract
Acne vulgaris, the most common skin disease, can cause substantial economic and psychological impacts to the people it affects, and its accurate grading plays a crucial role in the treatment of patients. In this paper, we firstly proposed an acne grading criterion that considers lesion classifications and a metric for producing accurate severity ratings. Due to similar appearance of acne lesions with comparable severities and difficult-to-count lesions, severity assessment is a challenging task. We cropped facial skin images of several lesion patches and then addressed the acne lesion with a lightweight acne regular network (Acne-RegNet). Acne-RegNet was built by using a median filter and histogram equalization to improve image quality, a channel attention mechanism to boost the representational power of network, a region-based focal loss to handle classification imbalances and a model pruning and feature-based knowledge distillation to reduce model size. After the application of Acne-RegNet, the severity score is calculated, and the acne grading is further optimized by the metadata of the patients. The entire acne assessment procedure was deployed to a mobile device, and a phone app was designed. Compared with state-of-the-art lightweight models, the proposed Acne-RegNet significantly improves the accuracy of lesion classifications. The acne app demonstrated promising results in severity assessments (accuracy: 94.56%) and showed a dermatologist-level diagnosis on the internal clinical dataset.The proposed acne app could be a useful adjunct to assess acne severity in clinical practice and it enables anyone with a smartphone to immediately assess acne, anywhere and anytime.
Collapse
Affiliation(s)
- Jiaoju Wang
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Yan Luo
- Department of dermatology of Xiangya hospital, Central South University, Changsha, 410083 Hunan China
| | - Zheng Wang
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China.,Science and Engineering School, Hunan First Normal University, Changsha, 410083 Hunan China
| | - Alphonse Houssou Hounye
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Cong Cao
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Muzhou Hou
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Jianglin Zhang
- Department of Dermatology of Shenzhen People's Hospital The Second Clinical Medical College of Jinan Uninversity, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020 Guangdong China.,Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| |
Collapse
|
5
|
Mitigating the negative impacts of marine invasive species – Sargassum muticum - a key seaweed for skincare products development. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
The Comparison of Total Phenolics, Total Antioxidant, and Anti-Tyrosinase Activities of Korean Sargassum Species. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6640789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sargassum species, a group of marine brown algae consumed in Asian countries, have shown various health benefits, such as improving the conditions of cardiovascular disease, osteoarthritis, and hypopigmentation. Also, these benefits are associated with their phenolic content and strong antioxidant capacities. However, the antioxidant capacities of different Sargassum species had not been thoroughly explored and compared. Thus, this study aimed to compare the total phenolic contents, total flavonoid contents, total antioxidant capacities, and anti-tyrosine activity of eleven Sargassum species harvested off the Korean coast. The results revealed that the total phenolic content (from 20.57 to 88.97 mg gallic acid equivalent/g dry weight (dw)), flavonoid content (from 22.08 to 82.33 mg quercetin equivalent/g dw), anti-tyrosinase activity (from 13.30 to 126.30 mg kojic acid equivalent/dw), and antioxidant capacities of the 11 Sargassum species had wide ranges. Among them, S. miyabei Yendo and S. hemiphyllum showed the highest total antioxidant capacities while S. miyabei Yendo exhibiting the highest total phenolic and flavonoid contents. The highest anti-tyrosinase activity was seen in S. fillicinum and S. yendoi. Sargahydroqunoic acid and sargachromanol, two alga-derived meroterpenoid compounds with strong antioxidant activity, were detected and quantified in S. miyabei Yendo and S. serratifolium. Our findings guarantee further investigation of the health benefits of Sargassum species and maximize the commercial usage of these species.
Collapse
|