1
|
Wójciak M, Paduch R, Drozdowski P, Wójciak W, Żuk M, Płachno BJ, Sowa I. Antioxidant and Anti-Inflammatory Effects of Nettle Polyphenolic Extract: Impact on Human Colon Cells and Cytotoxicity Against Colorectal Adenocarcinoma. Molecules 2024; 29:5000. [PMID: 39519642 PMCID: PMC11547774 DOI: 10.3390/molecules29215000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Urtica dioica L. is one of the most widely utilized medicinal plants commonly applied in the form of tea, juice, and dietary supplements. This study aimed to assess the effect of the U. dioica ethanol-water extract (UdE) and polyphenolic fraction isolated from the extract (UdF) on normal human colon epithelial cells and to evaluate their protective activity against induced oxidative stress. The cytotoxic potential against human colorectal adenocarcinoma (HT29) and the anti-inflammatory effects were also investigated. UPLC-MS-DAD analysis revealed that both extracts were abundant in caffeic acid derivatives, specifically chlorogenic and caffeoylmalic acids, and therefore, they showed significant protective and ROS scavenging effects in normal human colon epithelial cells. Moreover, they had no negative impact on cell viability and morphology in normal cells and the extracts, particularly UdF, moderately suppressed adenocarcinoma cells. Furthermore, UdF significantly decreased IL-1β levels in HT29 cells. Our research indicates that U. dioica may provide significant health advantages because of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland;
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| |
Collapse
|
2
|
Abi Akl M, Hajj R, Jamati G, Karam L, Ibrahim JN, Kobeissy PH, Younes M, Rizk S. Protective Effects of Nettle Tea on SKOV-3 Ovarian Cancer Cells Through ROS Production, Apoptosis Induction, and Motility Inhibition Without Altering Autophagy. Foods 2024; 13:3336. [PMID: 39456397 PMCID: PMC11507475 DOI: 10.3390/foods13203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Urtica dioica L. (UD), also known as the stinging nettle, has long been used in traditional medicine for its wide range of health benefits. The current study focuses on the effect of nettle tea on the growth and proliferation of one of the most aggressive ovarian adenocarcinoma cell line, SKOV-3 cells. To examine this, cytotoxicity, cell cycle analysis, and ROS assays were performed, along with Annexin V/PI dual staining, cell death ELISA, Western blot analysis, and motility assays. The results showed that a UD aqueous extract (UDAE) can inhibit the growth and proliferation of SKOV-3 cells in a dose- and time-dependent manner by promoting cellular fragmentation. This was accompanied by an increase in two apoptotic hallmarks, the flipping of phosphatidylserine to the outer membrane leaflet and DNA fragmentation as revealed by cell death ELISA. This aqueous extract showed a pro-oxidant activity while also activating the extrinsic caspase-dependent apoptotic pathway with no alteration in autophagy markers. Furthermore, the extract showed promising inhibitory effect on the migratory capacities of aggressive ovarian cancer cells, in vitro.
Collapse
Affiliation(s)
- Maria Abi Akl
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Roy Hajj
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Georgio Jamati
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| | - Louna Karam
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - José-Noel Ibrahim
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Philippe H. Kobeissy
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Maria Younes
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Sandra Rizk
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| |
Collapse
|
3
|
Abi Sleiman M, Younes M, Hajj R, Salameh T, Abi Rached S, Abi Younes R, Daoud L, Doumiati JL, Frem F, Ishak R, Medawar C, Naim HY, Rizk S. Urtica dioica: Anticancer Properties and Other Systemic Health Benefits from In Vitro to Clinical Trials. Int J Mol Sci 2024; 25:7501. [PMID: 39000608 PMCID: PMC11242153 DOI: 10.3390/ijms25137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
While conventional medicine has advanced in recent years, there are still concerns about its potential adverse reactions. The ethnopharmacological knowledge established over many centuries and the existence of a variety of metabolites have made medicinal plants, such as the stinging nettle plant, an invaluable resource for treating a wide range of health conditions, considering its minimal adverse effects on human health. The aim of this review is to highlight the therapeutic benefits and biological activities of the edible Urtica dioica (UD) plant with an emphasis on its selective chemo-preventive properties against various types of cancer, whereby we decipher the mechanism of action of UD on various cancers including prostate, breast, leukemia, and colon in addition to evaluating its antidiabetic, microbial, and inflammatory properties. We further highlight the systemic protective effects of UD on the liver, reproductive, excretory, cardiovascular, nervous, and digestive systems. We present a critical assessment of the results obtained from in vitro and in vivo studies as well as clinical trials to highlight the gaps that require further exploration for future prospective studies.
Collapse
Affiliation(s)
- Marc Abi Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Roy Hajj
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tommy Salameh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Samir Abi Rached
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rimane Abi Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Lynn Daoud
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jean Louis Doumiati
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Francesca Frem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Ramza Ishak
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Christopher Medawar
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
4
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
5
|
Nafeh G, Abi Akl M, Samarani J, Bahous R, Al Kari G, Younes M, Sarkis R, Rizk S. Urtica dioica Leaf Infusion Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to Cisplatin Treatment. Pharmaceuticals (Basel) 2023; 16:780. [PMID: 37375728 DOI: 10.3390/ph16060780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Urtica dioica (UD) has been widely used in traditional medicine due to its therapeutic benefits, including its anticancer effects. Natural compounds have a promising potential when used in combination with chemotherapeutic drugs. The present study explores the anticancer and anti-proliferative properties of UD tea in combination with cisplatin on MDA-MB-231 breast cancer cells in vitro. To elucidate the effect of this combination, a cell viability assay, Annexin V/PI dual staining, cell death ELISA, and Western blots were performed. The results showed that the combination of UD and cisplatin significantly decreased the proliferation of MDA-MB-231 cells in a dose- and time-dependent manner compared to each treatment alone. This was accompanied by an increase in two major hallmarks of apoptosis, the flipping of phosphatidylserine to the outer membrane leaflet and DNA fragmentation, as revealed by Annexin V/PI staining and cell death ELISA, respectively. DNA damage was also validated by the upregulation of the cleaved PARP protein as revealed by Western blot analysis. Finally, the increase in the Bax/Bcl-2 ratio further supported the apoptotic mechanism of death induced by this combination. Thus, a leaf infusion of Urtica dioica enhanced the sensitivity of an aggressive breast cancer cell line to cisplatin via the activation of apoptosis.
Collapse
Affiliation(s)
- Guy Nafeh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Abi Akl
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jad Samarani
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rawane Bahous
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Georges Al Kari
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rita Sarkis
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
6
|
Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 2023; 21:89. [PMID: 37127651 PMCID: PMC10152593 DOI: 10.1186/s12964-023-01109-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Collapse
Affiliation(s)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michalak Izabela
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Margalida Monserrat-Mequida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Felipe A Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128, Padova, Italy
- AIROB, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, Italy
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- The Elliott School of International Affairs, 1957 E St NW, George Washington UniversityWashington DC, 20052, USA
| | - Gulmira Tussupbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386, Concepción, Chile.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Application of a direct immersion—stir bar sorptive extraction (DI-SBSE) combined GC–MS method for fingerprinting alkylpyrazines in tea and tea-like infusions. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03954-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Quan H, Sun N, Liu S, Li M, Wang H, Wang Z. The analysis of flavonoids and triterpenes extracted from
Urtica
by LC‐MS and the antimicrobial activity of the extracts. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongxin Quan
- College of Life Engineering Shenyang Institute of Technology Fushun People’s Republic of China
| | - Ning Sun
- College of Life Engineering Shenyang Institute of Technology Fushun People’s Republic of China
| | - Shilong Liu
- College of Life Engineering Shenyang Institute of Technology Fushun People’s Republic of China
| | - Mengyuan Li
- College of Life Engineering Shenyang Institute of Technology Fushun People’s Republic of China
| | - Hongling Wang
- College of Life Engineering Shenyang Institute of Technology Fushun People’s Republic of China
| | - Zhuo Wang
- College of Life Engineering Shenyang Institute of Technology Fushun People’s Republic of China
| |
Collapse
|
9
|
Haykal T, Younes M, El Khoury M, Ammoury C, Tannous S, Hodroj MH, Sarkis R, Gasilova N, Menin L, Rizk S. The pro-apoptotic properties of a phytonutrient rich infusion of A. cherimola leaf extract on AML cells. Biomed Pharmacother 2021; 140:111592. [PMID: 34088572 DOI: 10.1016/j.biopha.2021.111592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Annonaceae family has broad uses in herbal medicine for treatment of several diseases, whether through seeds' or leaves' extracts. The present study investigates the antiproliferative and antitumor activity of Annona cherimola aqueous leaf (AAL) extract/infusion in acute myeloid leukemia (AML) cell lines in vitro. High-resolution LC-MS was first used to analyze the composition of the aqueous extract. Cell proliferation assay, Annexin V staining, cell cycle analysis, dual Annexin V/PI staining, cell death quantification by ELISA, ROS level detection and Western Blotting were then performed to elucidate the therapeutic effects of AAL extract. The results obtained revealed a potent antioxidant activity of AAL extract. Moreover, the extract exhibited dose- and time-dependent antiproliferative effects on AML cell lines by decreasing cell viability with an IC50 of 5.03% (v/v) at 24 h of treatment of KG-1 cells. This decrease in viability was accompanied with a significant increase in apoptotic cell death with cell cycle arrest and flipping of the phosphatidylserine from the inner to the outer leaflet of the cell membrane. The respective overexpression and downregulation of proapoptotic proteins like cleaved caspase-8, cleaved PARP-1 and Bax and antiapoptotic proteins like Bcl-2 further validated the apoptotic pathway induced by AAL on AML cells. Finally, LC-MS revealed the presence of several compounds like fatty acids, terpenes, phenolics, cinnamic acids and flavonoids that could contribute to the antioxidant and anti-cancer effects of this herbal infusion. In addition to the generally known nutritional effects of the Annona cherimola fruit and leaves, the presented data validates the antioxidant and anti-cancerous effects of the leaf infusion on AML cell lines, proposing its potential therapeutic use against acute myeloid leukemia with future in vivo and clinical trials.
Collapse
Affiliation(s)
- Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Marianne El Khoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Carl Ammoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Stephanie Tannous
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Mohammad H Hodroj
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Rita Sarkis
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon; Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
10
|
The Agglutinin of Common Nettle (Urtica dioica L.) Plant Effects on Gene Expression Related to Apoptosis of Human Acute Myeloid Leukemia Cell Line. Biochem Genet 2021; 59:1049-1064. [PMID: 33675488 DOI: 10.1007/s10528-020-10024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Treatment of acute myeloid leukemia (AML) requires new drugs as result of a rise in new cases and high disease relapse. Plant lectins with the ability to bind carbohydrates on the cell surface have the potential to treat cancer. Urtica dioica L. agglutinin (UDA) is a low weight lectin with anti-benign prostatic hyperplasia (BPH) impact. Here, we examine the impact of UDA on HL-60 cell line. Cytotoxicity and cytostatic effects were assessed in HL-60 cells treated with UDA and vincristine (positive control). The effects of the lectin on cell cycle phases and cell death mechanism were surveyed by propidium iodide (PI) staining and annexin V/PI, respectively. The activation status of the apoptosis pathway was determined by western blotting. Finally, the expression levels of 84 genes were examined by the Human cancer drug target gene PCR array kit. The results indicated that the increase in UDA concentration inhibited the proliferation of HL-60 cells as well as apoptosis induction. Cell cycle analysis showed that the number of sub G1 cells increased essentially. Experimental observations showed that UDA can induce cell apoptosis through a caspase 9-dependent pathway. The expression changes of 21 genes confirmed the apoptotic events in HL-60 cells treated with UDA. In this, we have presented the first investigation on the cytotoxic and apoptotic effects of a lectin isolated from rhizomes and roots of Urtica dioica L. on human AML cells. Generally, the results suggest that UDA may have therapeutic value for leukemia and would be studied further as a new drug for AML later on.
Collapse
|
11
|
Singab RA, Elleboudy NS, Elkhatib WF, Yassein MA, Hassouna NA. Improvement of caffeic acid biotransformation into para-hydroxybenzoic acid by Candida albicans CI-24 via gamma irradiation and model-based optimization. Biotechnol Appl Biochem 2021; 69:469-478. [PMID: 33576532 DOI: 10.1002/bab.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/09/2021] [Indexed: 11/08/2022]
Abstract
Para-hydroxybenzoic acid (PHBA) has great potential in biological applications due to its putative antiviral activity against SARS-CoV-2 and its antimicrobial activity in the face of the radically increasing number of multidrug-resistant pathogens. This is in addition to its antimutagenic, anti-inflammatory, antioxidant, hypoglycemic, antiestrogenic, and antiplatelet aggregating activities. In this study, an approximate sixfold increase in the production of PHBA was achieved via biotransformation of caffeic acid by Candida albicans. The improvement was performed in two steps: first, through mutation by gamma irradiation (5 KGy dose), resulting in the recovery of a mutant (CI-24), which produced approximately triple the amount of PHBA produced by the wild-type isolate. Then, biotransformation by this mutant was further optimized via response surface methodology model-based optimization. The maximum PHBA production (7.47 mg/mL) was obtained in a fermentation medium composed of 1% w/v yeast extract as a nitrogen source, with an initial pH of 6.6, incubated at 28 °C at an agitation rate of 250 rpm. To further enhance the performance and economics of the process, cells of the CI-24 mutant were immobilized in calcium alginate beads and could retain an equivalent biotransformation capacity after three successive biotransformation cycles.
Collapse
Affiliation(s)
- Raghda Abdelnasser Singab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, Egypt
| | - Nooran Sherif Elleboudy
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, Egypt
| | - Walid Faisal Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Mahmoud Abdulmegead Yassein
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, Egypt
| | - Nadia Adelhaleem Hassouna
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, Egypt
| |
Collapse
|
12
|
Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K, Koklesova L, Kuruc T, Adamkov M, Smejkal K, Svajdlenka E, Solar P, Pec M, Büsselberg D, Sadlonova V, Mojzis J. Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma. Int J Mol Sci 2020; 22:ijms22010183. [PMID: 33375383 PMCID: PMC7795985 DOI: 10.3390/ijms22010183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters-ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, 812 50 Bratislava, Slovakia;
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Karin Jasek
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Peter Solar
- Department of Medical Biology, Faculty of Medicine, P. J. Šafárik University, 040 11 Kosice, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, 24144 Doha, Qatar;
| | - Vladimira Sadlonova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
- Correspondence: (P.K.); (V.S.); (J.M.)
| |
Collapse
|