1
|
Mao Z, Zhang Y, Liang Y, Xia C, Tang L. Liver X receptor α contribution to neuroinflammation and glial cells activation induced by MPTP: Implications for Parkinson's disease. Neuroscience 2024; 560:109-119. [PMID: 39306319 DOI: 10.1016/j.neuroscience.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder whose etiology remains unknown. The immune system has been implicated in hallmarks of PD including aggregation of α-synuclein and death of dopaminergic neurons in the substantia nigra. As a core regulator of immune response and inflammation, liver X receptors (LXRs) have been shown to have protective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. With two isoforms of LXRs (LXRα and LXRβ) expressed in the brain, their roles and distributions in this tissue remain largely unexplored. Here, we used MPTP to mimic symptoms and biomedical changes seen in PD in LXRα-/- and wild-type mice to investigate the role of LXRα in the etiology and progression of PD. We found that MPTP is unable to induce motor deficits, anxiety-like behavior in LXRα-/- mice, which has been seen in WT mice. Gene ontology analysis of RNA sequencing revealed that knockout of LXRα led to enrichment of the process, including immune response and inflammation in the midbrain. In addition, MPTP did not lead to dopaminergic neuron death in the striatum and substantia nigra in LXRα-/- mice, the basal GFAP protein level, and pro-inflammatory cytokines were elevated in LXRα-/- mice. Lastly, the microglia activation and astrogliosis caused by MPTP intoxication we found in WT mice were abolished in LXRα-/- mice. To sum up, we conclude that LXRα is a critical regulator in MPTP intoxication and may play a unique role in astrogliosis seen in the neuroinflammation of PD.
Collapse
Affiliation(s)
- Zhihao Mao
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuning Zhang
- Department of Pharmacy, Nanfang hospital, Southern Medical University, Guangzhou 510515, China
| | - Yirong Liang
- College of Biological Science, University of California Davis, Davis, CA 95616, USA
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Maffia P, Mauro C, Case A, Kemper C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol 2024; 21:743-761. [PMID: 38600367 DOI: 10.1038/s41569-024-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild, Accra, Ghana
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ayden Case
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Diercks AH, Podolskaia IS, Murray TA, Jahn AN, Mai D, Liu D, Amon LM, Nakagawa Y, Shimano H, Aderem A, Gold ES. Oxysterol binding protein regulates the resolution of TLR-induced cytokine production in macrophages. Proc Natl Acad Sci U S A 2024; 121:e2406492121. [PMID: 39361877 PMCID: PMC11331125 DOI: 10.1073/pnas.2406492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/30/2024] [Indexed: 10/05/2024] Open
Abstract
Toll-like receptors (TLRs) on macrophages sense microbial components and trigger the production of numerous cytokines and chemokines that mediate the inflammatory response to infection. Although many of the components required for the activation of the TLR pathway have been identified, the mechanisms that appropriately regulate the magnitude and duration of the response and ultimately restore homeostasis are less well understood. Furthermore, a growing body of work indicates that TLR signaling reciprocally interacts with other fundamental cellular processes, including lipid metabolism but only a few specific molecular links between immune signaling and the macrophage lipidome have been studied in detail. Oxysterol-binding protein (Osbp) is the founding member of a family of lipid-binding proteins with diverse functions in lipid sensing, lipid transport, and cell signaling but its role in TLR responses is not well defined. Here, we demonstrate that altering the state of Osbp with its natural ligand, 25-hydroxycholesterol (25HC), or pharmacologically, sustains and thereby amplifies Tlr4-induced cytokine production in vitro and in vivo. CRISPR-induced knockdown of Osbp abrogates the ability of these ligands to sustain TLR responses. Lipidomic analysis suggested that the effect of Osbp on TLR signaling may be mediated by alterations in triglyceride production and treating cells with a Dgat1 inhibitor, which blocks triglyceride production and completely abrogates the effect of Osbp on TLR signaling. Thus, Osbp is a sterol sensor that transduces perturbations of the lipidome to modulate the resolution of macrophage inflammatory responses.
Collapse
Affiliation(s)
- Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Irina S. Podolskaia
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Tara A. Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Ana N. Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Dong Liu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Lynn M. Amon
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, SugitaniToyama930-0194, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki305-8577, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Elizabeth S. Gold
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
- Center for Cardiovascular Health, Virginia Mason Franciscan Health, Seattle, WA98101
| |
Collapse
|
4
|
Je S, Choi BY, Kim E, Kim K, Lee Y, Yamaoka Y. Sterol Biosynthesis Contributes to Brefeldin-A-Induced Endoplasmic Reticulum Stress Resistance in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2024; 65:916-927. [PMID: 37864404 DOI: 10.1093/pcp/pcad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
The endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored. Our investigation focused on Chlamydomonas strain CC-4533 and revealed that free sterol biosynthesis increased in response to ER stress, except in mutants of the ER stress sensor Inositol-requiring enzyme 1 (IRE1). Transcript analysis of Chlamydomonas experiencing ER stress unveiled the regulatory role of the IRE1/basic leucine zipper 1 pathway in inducing the expression of ERG5, which encodes C-22 sterol desaturase. Through the isolation of three erg5 mutant alleles, we observed a defect in the synthesis of Chlamydomonas' sterol end products, ergosterol and 7-dehydroporiferasterol. Furthermore, these erg5 mutants also exhibited increased sensitivity to ER stress induced by brefeldin A (BFA, an inhibitor of ER-Golgi trafficking), whereas tunicamycin (an inhibitor of N-glycosylation) and dithiothreitol (an inhibitor of disulfide-bond formation) had no such effect. Intriguingly, the sterol biosynthesis inhibitors fenpropimorph and fenhexamid, which impede steps upstream of the ERG5 enzyme in sterol biosynthesis, rescued BFA hypersensitivity in CC-4533 cells. Collectively, our findings support the conclusion that the accumulation of intermediates in the sterol biosynthetic pathway influences ER stress in a complex manner. This study highlights the significance and complexity of regulating sterol biosynthesis during the ER stress response in microalgae.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Bae Young Choi
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Eunbi Kim
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyungyoon Kim
- Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
5
|
Dowdy T, Vilamu HM, Lita A, Li A, Yamasaki T, Zhang L, Chari R, Song H, Zhang M, Zhang W, Briceno N, Davis D, Gilbert MR, Larion M. Targeting the sphingolipid rheostat in IDH1 mut glioma alters cholesterol homeostasis and triggers apoptosis via membrane degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591321. [PMID: 38903071 PMCID: PMC11188108 DOI: 10.1101/2024.04.26.591321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The cross-regulation of metabolism and trafficking is not well understood for the vital sphingolipids and cholesterol constituents of cellular compartments. While reports are starting to surface on how sphingolipids like sphingomyelin (SM) dysregulate cholesterol levels in different cellular compartments (Jiang et al., 2022), limited research is available on the mechanisms driving the relationship between sphingolipids and cholesterol homeostasis, or its biological implications. Previously, we have identified sphingolipid metabolism as a unique vulnerability for IDH1 mut gliomas via a rational drug design. Herein, we show how modulating sphingolipid levels affects cholesterol homeostasis in brain tumors. However, we unexpectedly discovered for the first time that C17 sphingosine and NDMS addition to cancer cells alters cholesterol homeostasis by impacting its cellular synthesis, uptake, and efflux leading to a net decrease in cholesterol levels and inducing apoptosis. Our results reflect a reverse correlation between the levels of sphingosines, NDMS, and unesterified, free cholesterol in the cells. We show that increasing sphingosine and NDMS (a sphingosine analog) levels alter not only the trafficking of cholesterol between membranes but also the efflux and synthesis of cholesterol. We also demonstrate that despite the effort to remove free cholesterol by ABCA1-mediated efflux or by suppressing machinery for the influx (LDLR) and biosynthetic pathway (HMGCR), apoptosis is inevitable for IDH1 mut glioma cells. This is the first study that shows how altering sphingosine levels directly affects cholesterol homeostasis in cancer cells and can be used to manipulate this relationship to induce apoptosis in IDH1 mut gliomas.
Collapse
|
6
|
Liu Y, Niu R, Zhao H, Wang Y, Song S, Zhang H, Zhao Y. Single-Site Nanozymes with a Highly Conjugated Coordination Structure for Antitumor Immunotherapy via Cuproptosis and Cascade-Enhanced T Lymphocyte Activity. J Am Chem Soc 2024; 146:3675-3688. [PMID: 38305736 DOI: 10.1021/jacs.3c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The extracellular matrix (ECM) in the tumor microenvironment (TME) and upregulated immune checkpoints (ICs) on antitumor immune cells impede the infiltration and killing effect of T cells, creating an immunosuppressive TME. Herein, a cholesterol oxidase (CHO) and lysyl oxidase inhibitor (LOX-IN-3) co-delivery copper-dibenzo-[g,p]chrysene-2,3,6,7,10,11,14,15-octaol single-site nanozyme (Cu-DBCO/CL) was developed. The conjugated organic ligand and well-distributed Cu-O4 sites endow Cu-DBCO with unique redox capabilities, enabling it to catalyze O2 and H2O2 to ·O2- and ·OH. This surge of reactive oxygen species (ROS) leads to impaired mitochondrial function and insufficient ATP supply, impacting the function of copper-transporting ATPase-1 and causing dihydrolipoamide S-acetyltransferase oligomerization-mediated cuproptosis. Moreover, multiple ROS storms and glutathione peroxidase 4 depletion also induce lipid peroxidation and trigger ferroptosis. Simultaneously, the ROS-triggered release of LOX-IN-3 reshapes the ECM by inhibiting lysyl oxidase activity and further enhances the infiltration of cytotoxic T lymphocytes (CD8+ T cells). CHO-triggered cholesterol depletion not only increases ·OH generation but also downregulates the expression of ICs such as PD-1 and TIM-3, restoring the antitumor activity of tumor-infiltrating CD8+ T cells. Therefore, Cu-DBCO/CL exhibits efficient properties in activating a potent antitumor immune response by cascade-enhanced CD8+ T cell viability. More importantly, ECM remodeling and cholesterol depletion could suppress the metastasis and proliferation of the tumor cells. In short, this immune nanoremodeler can greatly enhance the infiltration and antitumor activity of T cells by enhancing tumor immunogenicity, remodeling ECM, and downregulating ICs, thus achieving effective inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Huan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
7
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Fu J, Liang Y, Shi Y, Yu D, Wang Y, Chen P, Liu S, Lu F. HuangQi ChiFeng decoction maintains gut microbiota and bile acid homeostasis through FXR signaling to improve atherosclerosis. Heliyon 2023; 9:e21935. [PMID: 38034657 PMCID: PMC10685252 DOI: 10.1016/j.heliyon.2023.e21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Huangqi Chifeng Decoction (HQCFT), a traditional Chinese medicine preparation, has long been used to treat cardiovascular and cerebrovascular diseases. However, the mechanism of the beneficial effect of HQCFT on atherosclerosis remains to be explored. In this work, to investigate the effects of HQCFT on bile acid (BA) metabolism and the gut microbiome in atherosclerosis, ApoE-/- mice were fed a with high-fat diet for 16 weeks to establish the AS model. HQCFT(1.95 g kg-1 and 3.9 g kg-1 per day) was administered intragastrically for 8 weeks to investigate the regulatory effects of HQCFT on gut microbiota and bile acid metabolism and to inhibit the occurrence and development of AS induced by a high-fat diet. Histopathology, liver function and blood lipids were used to assess whether HQCFT can reduce plaque area, regulate lipid levels and alleviate liver steatosis in AS mice. In addition, 16S rDNA sequencing was used to screen the gut microbiota structure, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS) was used to determine the bile acid profile. The mRNA and protein expression levels of bile acid metabolism were detected by RT‒PCR and WB to find the potential correlation. Results: HQCFT can regulate gut microbiota disorders, which was achieved by increasing gut microbiota diversity and altering Proteobacteria, Desulfobacterota, Deferribacteres, Rodentibacter, Parasutterella, and Mucispirillum interference abundance to improve AS-induced gut microbiota. HQCFT can also adjust the content of bile acids (TCA, LCA, DCA, TDCA, TLCA, UDCA, etc.), regulate bile acid metabolism, relieve liver fat accumulation, and inhibit the process of AS. In addition, HQCFT can restore the abnormal metabolism of bile acid caused by AS by regulating the expression of farnesoid X receptor (FXR), liver X receptor α (LXRα), ABCA1, ABCG1 and CYP7A1. Conclusion: HQCFT may play a part in the prevention of atherosclerosis by inhibiting the FXR/LXRα axis, increasing the expression of CYP7A1 in the liver, and regulating the interaction between the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Yin N, Wang Y, Liu Y, Niu R, Zhang S, Cao Y, Lv Z, Song S, Liu X, Zhang H. A Cholesterol Metabolic Regulated Hydrogen-Bonded Organic Framework (HOF)-Based Biotuner for Antibody Non-Dependent Immunotherapy Tailored for Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303567. [PMID: 37466394 DOI: 10.1002/adma.202303567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The metabolic reprogramming of glioblastoma (GBM) poses a tremendous obstacle to effective immunotherapy due to its impact on the immunosuppressive microenvironment. In this work, a hydrogen-bonded organic framework (HOF) specifically designed for GBM immunotherapy is developed, taking advantage of the relatively isolated cholesterol metabolism microenvironment in the central nervous system (CNS). The HOF-based biotuner regulates extra/intracellular cholesterol metabolism, effectively blocking the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway and reducing 2B4 expression. This metabolically disrupts the immunosuppressive microenvironment of GBM and rejuvenates CD8+ T cells. Moreover, cholesterol metabolism regulation offers additional benefits in treating GBM invasion. Furthermore, tumor microenvironment (TME)-initiated chemiexcited photodynamic therapy (PDT) is enhanced during the regulation of cholesterol metabolism, and the biotuner can effectively trigger immunogenic cell death (ICD) and increase the infiltration of cytotoxic T lymphocytes (CTLs) in GBM. By reversing the immunosuppressive microenvironment and bolstering chemiexcited-PDT, this approach invigorates efficient antibody non-dependent immunotherapy for GBM. This study provides a model for enhancing immunotherapy through cholesterol metabolism regulation and explores the feasibility of a "metabolic checkpoint" strategy in GBM treatment.
Collapse
Affiliation(s)
- Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuai Zhang
- The First Hospital of Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Yue Cao
- The First Hospital of Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Zhijia Lv
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Ye H, Liu Q, Wang Y, Zhen X, Yan N. The Effect of Cholesterol Efflux on Endothelial Dysfunction Caused by Oxidative Stress. Int J Mol Sci 2023; 24:ijms24065939. [PMID: 36983012 PMCID: PMC10056126 DOI: 10.3390/ijms24065939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Endothelial dysfunction (ED) is the initiation of atherosclerosis (AS). Our previous studies have found that cholesterol metabolism and the Wnt/β-catenin pathway can affect endoplasmic reticulum stress (ER stress), which ultimately leads to ED. However, the effects of cholesterol efflux on ED, which are caused by oxidative stress and the correlation among ER stress, Wnt/β-catenin pathway, and cholesterol efflux, are not clear during ED. To uncover them, the expressions of liver X receptors (LXRα and LXRβ) and ATP-binding cassette protein A1 (ABCA1) and G1 (ABCG1) in HUVECs (human umbilical vein endothelial cells) were measured under oxidative stress. Moreover, HUVECs were treated with LXR-623 (LXR agonist), cholesterol, tunicamycin, and salinomycin alone or together. The results indicated that oxidative stress-induced ED could deregulate the expressions of LXRα and LXRβ and trigger the ER stress and Wnt/β-catenin pathway, resulting thereafter in the accumulation of cholesterol. Furthermore, similar results were shown after treatment with cholesterol; however, the activation of liver X receptor (LXR) could reverse these changes. Furthermore, other results demonstrated that tunicamycin-induced ER stress could stimulate the accumulation of cholesterol and the Wnt/β-catenin pathway, further leading to ED. Inversely, salinomycin could reverse the above effects by deregulating the Wnt/β-catenin pathway. Collectively, our results showed that cholesterol efflux is partly responsible for the oxidative stress-induced ED; in addition, ER stress, the Wnt/β-catenin pathway, and cholesterol metabolism can interact with each other to promote ED.
Collapse
Affiliation(s)
- Hua Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Qian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Yuanyuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Ximian Zhen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| |
Collapse
|
11
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
12
|
Yang TM, Miao M, Yu WQ, Wang X, Xia FJ, Li YJ, Guo SD. Targeting macrophages in atherosclerosis using nanocarriers loaded with liver X receptor agonists: A narrow review. Front Mol Biosci 2023; 10:1147699. [PMID: 36936982 PMCID: PMC10018149 DOI: 10.3389/fmolb.2023.1147699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Macrophages are involved in the whole process of atherosclerosis, which is characterized by accumulation of lipid and inflammation. Presently, clinically used lipid-lowering drugs cannot completely retard the progress of atherosclerosis. Liver X receptor (LXR) plays a key role in regulation of lipid metabolism and inflammation. Accumulating evidence have demonstrated that synthetic LXR agonists can significantly retard the development of atherosclerosis. However, these agonists induce sever hypertriglyceridemia and liver steatosis. These side effects have greatly limited their potential application for therapy of atherosclerosis. The rapid development of drug delivery system makes it possible to delivery interested drugs to special organs or cells using nanocarriers. Macrophages express various receptors which can recognize and ingest specially modified nanocarriers loaded with LXR agonists. In the past decades, a great progress has been made in this field. These macrophage-targeted nanocarriers loaded with LXR agonists are found to decrease atherosclerosis by reducing cholesterol accumulation and inflammatory reactions. Of important, these nanocarriers can alleviate side effects of LXR agonists. In this article, we briefly review the roles of macrophages in atherosclerosis, mechanisms of action of LXR agonists, and focus on the advances of macrophage-targeted nanocarriers loaded with LXR agonists. This work may promote the potential clinical application of these nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan-Jie Li
- *Correspondence: Yan-Jie Li, ; Shou-Dong Guo,
| | | |
Collapse
|
13
|
Luo Y, Jiao Q, Chen Y. Targeting endoplasmic reticulum stress-the responder to lipotoxicity and modulator of non-alcoholic fatty liver diseases. Expert Opin Ther Targets 2022; 26:1073-1085. [PMID: 36657744 DOI: 10.1080/14728222.2022.2170780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress occurs with aberrant lipid accumulation and resultant adverse effects and widely exists in nonalcoholic fatty liver disease (NAFLD). It triggers the unfolded protein response (UPR) to restore ER homeostasis and actively participates in NAFLD pathological processes, including hepatic steatosis, inflammation, hepatocyte death, and fibrosis. Such acknowledges drive the discovery of novel NAFLD biomarker and therapeutic targets and the development of ER-stress targeted NAFLD drugs. AREAS COVERED This article discusses and updates the role of ER stress and UPR in NAFLD, the underlying action mechanism, and especially their full participation in NAFLD pathophysiology. It characterizes key molecular targets useful for the prevention and treatment of NAFLD and highlights the recent ER stress-targeted therapeutic strategies for NAFLD. EXPERT OPINION Targeting ER Stress is a valuable and promising strategy for NAFLD treatment, but its smooth translation into clinical application still requires better clarification of the different UPR patterns in diverse NAFLD physiological states. Further understanding of the distinct effects of these various patterns on NAFLD, the thresholds deciding their final impacts, and their actions via non-liver tissues and cells would be of great help to develop a precise and effective therapy for NAFLD. [Figure: see text].
Collapse
Affiliation(s)
- Yu Luo
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China
| | - Yuping Chen
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China.,Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Zhang H, Lianto P, Li W, Xu M, Moore JB, Thorne JL. Associations between liver X receptor polymorphisms and blood lipids: A systematic review and meta-analysis. Steroids 2022; 185:109057. [PMID: 35679909 DOI: 10.1016/j.steroids.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022]
Abstract
Genetic susceptibility to dyslipidaemia remains incompletely understood. The liver X receptors (LXRs), members of the nuclear receptor superfamily of ligand dependent transcription factors, are homeostatic regulators of lipid metabolism. Multiple single nucleotide polymorphisms (SNPs)have been identified previously in the coding and regulatory regions of the LXRs. The aim of this systematic review and meta-analysis was to summarise associations between SNPs of LXRs (α and β isoforms) with blood lipid and lipoprotein traits. Five databases (PubMed, Ovid Embase, Scopus, Web of Science, and the Cochrane Library) were systematically searched for population-based studies that assessed associations between one or more blood lipid/lipoprotein traits and LXR SNPs. Of seventeen articles included in the qualitative synthesis, ten were eligible for meta-analysis. Nine LXRα SNPs and five LXRβ SNPs were identified, and the three most studied LXRα SNPs were quantitatively summarised. Carriers of the minor allele A of LXRα rs12221497 (-115G>A) had higher triglyceride levels than GG homozygotes (0.13 mmol/L; 95%CI: [0.03, 0.23], P = 0.01). Heterozygote carriers of LXRα rs2279238 (297C/T) had higher total cholesterol levels (0.12 mmol/L; (95%CI: [0.01, 0.23], P = 0.04) than either CC or TT homozygotes. For LXRα rs11039155 (-6G>A), no significant differences in blood levels of either triglyceride (P = 0.39) or HDL-C (P = 0.98) were detected between genotypes in meta-analyses. In addition, there were no strong associations for other SNPs of LXRα and LXRβ. This study provides the evidence of an association between LXRα, but not LXRβ, SNPs and blood-lipid traits. Systematic review registration: PROSPERO No. CRD42021246158.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Weiming Li
- Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Mengfan Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - J Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
15
|
Salaroglio IC, Belisario DC, Akman M, La Vecchia S, Godel M, Anobile DP, Ortone G, Digiovanni S, Fontana S, Costamagna C, Rubinstein M, Kopecka J, Riganti C. Mitochondrial ROS drive resistance to chemotherapy and immune-killing in hypoxic non-small cell lung cancer. J Exp Clin Cancer Res 2022; 41:243. [PMID: 35953814 PMCID: PMC9373288 DOI: 10.1186/s13046-022-02447-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Solid tumors subjected to intermittent hypoxia are characterized by resistance to chemotherapy and immune-killing by effector T-lymphocytes, particularly tumor-infiltrating Vγ9Vδ2 T-lymphocytes. The molecular circuitries determining this double resistance are not known. Methods We analyzed a panel of 28 human non-small cell lung cancer (NSCLC) lines, using an in vitro system simulating continuous and intermittent hypoxia. Chemosensitivity to cisplatin and docetaxel was evaluated by chemiluminescence, ex vivo Vγ9Vδ2 T-lymphocyte expansion and immune-killing by flow cytometry. Targeted transcriptomics identified efflux transporters and nuclear factors involved in this chemo-immuno-resistance. The molecular mechanism linking Hypoxia-inducible factor-1α (HIF-1α), CCAAT/Enhancer Binding Protein-β (C/EBP-β) isoforms LAP and LIP, ABCB1, ABCC1 and ABCA1 transporters were evaluated by immunoblotting, RT-PCR, RNA-IP, ChIP. Oxidative phosphorylation, mitochondrial ATP, ROS, depolarization, O2 consumption were monitored by spectrophotometer and electronic sensors. The role of ROS/HIF-1α/LAP axis was validated in knocked-out or overexpressing cells, and in humanized (Hu-CD34+NSG) mice bearing LAP-overexpressing tumors. The clinical meaning of LAP was assessed in 60 NSCLC patients prospectively enrolled, treated with chemotherapy. Results By up-regulating ABCB1 and ABCC1, and down-regulating ABCA1, intermittent hypoxia induced a stronger chemo-immuno-resistance than continuous hypoxia in NSCLC cells. Intermittent hypoxia impaired the electron transport chain and reduced O2 consumption, increasing mitochondrial ROS that favor the stabilization of C/EBP-β mRNA mediated by HIF-1α. HIF-1α/C/EBP-β mRNA binding increases the splicing of C/EBP-β toward the production of LAP isoform that transcriptionally induces ABCB1 and ABCC1, promoting the efflux of cisplatin and docetaxel. LAP also decreases ABCA1, limiting the efflux of isopentenyl pyrophosphate, i.e. the endogenous activator of Vγ9Vδ2 T-cells, and reducing the immune-killing. In NSCLC patients subjected to cisplatin-based chemotherapy, C/EBP-β LAP was abundant in hypoxic tumors and was associated with lower response to treatment and survival. LAP-overexpressing tumors in Hu-CD34+NSG mice recapitulated the patients’ chemo-immuno-resistant phenotype. Interestingly, the ROS scavenger mitoquinol chemo-immuno-sensitized immuno-xenografts, by disrupting the ROS/HIF-1α/LAP cascade. Conclusions The impairment of mitochondrial metabolism induced by intermittent hypoxia increases the ROS-dependent stabilization of HIF-1α/LAP complex in NSCLC, producing chemo-immuno-resistance. Clinically used mitochondrial ROS scavengers may counteract such double resistance. Moreover, we suggest C/EBP-β LAP as a new predictive and prognostic factor in NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02447-6.
Collapse
|
16
|
Peng Y, Gu T, Zhong T, Xiao Y, Sun Q. Endoplasmic Reticulum Stress in Metabolic Disorders: Opposite Roles of Phytochemicals and Food Contaminants. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yu Z, Feng Z, Fu L, Wang J, Li C, Zhu H, Xie T, Zhou J, Zhou L, Zhou X. Qingluotongbi formula regulates the LXRα-ERS-SREBP-1c pathway in hepatocytes to alleviate the liver injury caused by Tripterygium wilfordii Hook. f. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114952. [PMID: 34968661 DOI: 10.1016/j.jep.2021.114952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii Hook. f. (TW) is widely used to treat autoimmune and inflammatory diseases; however, its development and application is limited by its significant association with liver injury. The compound formula Qingluotongbi (QLT) employs TW as its main component and is used to treat rheumatoid arthritis with no adverse reactions, suggesting that QLT may reduce the liver toxicity of TW. AIM OF THE STUDY We examined whether TW interferes with lipid metabolism to induce liver injury, and evaluated the protective effect of QLT in in vivo and in vitro experiments. MATERIALS AND METHODS After administration of QLT and its ingredients, HepaRG cells and SD rats were tested for biochemical indicators, hepatocytes lipid changes, and rat liver pathological changes, and then we analyzed for the gene expression of liver X receptor α (LXRα), endoplasmic reticulum stress (ERS) key proteins, sterol regulatory element binding protein-1c (SREBP-1c), and lipid-synthesizing enzymes. In HepaRG cells, the protein expression of glucose-regulated protein 78 kDa (GRP78) and LXRα was detected after addition of an LXRα inhibitor, LXRα agonist, and ERS inhibitor. RESULTS TW caused significant elevation of biochemical indicators and lipid droplet deposition in hepatocytes, as well as upregulated the gene expression of LXRα, ERS key proteins, SREBP-1c, and lipid-synthesizing enzymes in both in vitro and in vivo settings, and caused liver injury in rats. QLT can alleviate the lipotoxic liver injury caused by TW. LXRα agonist further activated ERS induced by TW, whereas LXRα inhibitor significantly reduced ERS and lipotoxic injury induced by TW in HepaRG cells. CONCLUSIONS TW upregulated LXRα to activate ERS and increased the gene expression of SREBP-1c and lipid-synthesizing enzymes, leading to increased lipid synthesis in hepatocytes to result in liver injury. QLT inhibited the LXRα-ERS-SREBP-1c pathway and reduced abnormal lipid synthesis in hepatocytes and the hepatotoxicity of TW.
Collapse
Affiliation(s)
- Zhichao Yu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Zhe Feng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Ling Fu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jing Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Changqing Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jie Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xueping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
18
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Dihydroartemisinin improves hypercholesterolemia in ovariectomized mice via enhancing vectorial transport of cholesterol and bile acids from blood to bile. Bioorg Med Chem 2022; 53:116520. [PMID: 34847494 DOI: 10.1016/j.bmc.2021.116520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
The increase of concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum of postmenopausal women is the important risk factor of the high morbidity of cardiovascular diseases of old women worldwide. To test the anti-hypercholesterolemia function of dihydroartemisinin (DHA) in postmenopausal women, ovariectomized (OVX) mice were generated, and DHA were administrated to OVX mice for 4 weeks. The blood and liver tissues were collected for biochemical and histological tests respectively. The mRNA and protein expression levels of genes related to metabolism and transport of cholesterol, bile acid and fatty acid in the liver or ileum were checked through qPCR and western blot. DHA could significantly reduce the high concentrations of TC and LDL-C in the serum and the lipid accumulation in the liver of ovariectomized mice. The expression of ABCG5/8 was reduced in liver of OVX mice, and DHA could up-regulate the expression of them. Genes of transport proteins for bile salt transport from blood to bile, including Slc10a1, Slco1b2 and Abcb11, were also significantly up-regulated by DHA. DHA also down-regulated the expression of Slc10a2 in the ileum of OVX mice to reduce the absorption of bile salts. Genes required for fatty acid synthesis and uptake, such as Fasn and CD36, were reduced in the liver of OVX mice, and DHA administration could significantly up-regulate the expression of them. These results demonstrated that DHA could improve hypercholesterolemia in OVX mice through enhancing the vectorial transport of cholesterol and bile acid from blood to bile.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19(#), Yue-Xiu District, Guangzhou 510080, PR China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Passarelli M, Machado UF. AGEs-Induced and Endoplasmic Reticulum Stress/Inflammation-Mediated Regulation of GLUT4 Expression and Atherogenesis in Diabetes Mellitus. Cells 2021; 11:104. [PMID: 35011666 PMCID: PMC8750246 DOI: 10.3390/cells11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
In recent decades, complex and exquisite pathways involved in the endoplasmic reticulum (ER) and inflammatory stress responses have been demonstrated to participate in the development and progression of numerous diseases, among them diabetes mellitus (DM). In those pathways, several players participate in both, reflecting a complicated interplay between ER and inflammatory stress. In DM, ER and inflammatory stress are involved in both the pathogenesis of the loss of glycemic control and the development of degenerative complications. Furthermore, hyperglycemia increases the generation of advanced glycation end products (AGEs), which in turn refeed ER and inflammatory stress, contributing to worsening glycemic homeostasis and to accelerating the development of DM complications. In this review, we present the current knowledge regarding AGEs-induced and ER/inflammation-mediated regulation of the expression of GLUT4 (solute carrier family 2, facilitated glucose transporter member 4), as a marker of glycemic homeostasis and of cardiovascular disease (CVD) development/progression, as a leading cause of morbidity and mortality in DM.
Collapse
Affiliation(s)
- Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
20
|
Wang X, Liang Z, Xiang H, Li Y, Chen S, Lu H. LKB1 Regulates Vascular Macrophage Functions in Atherosclerosis. Front Pharmacol 2021; 12:810224. [PMID: 34975507 PMCID: PMC8714937 DOI: 10.3389/fphar.2021.810224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Liver kinase B1 (LKB1) is known to shape the regulation of macrophage function by participating in multiple processes including cell metabolism, growth, and polarization. However, whether LKB1 also affects the functional plasticity of macrophages in atherosclerosis has not attracted much attention. Abnormal macrophage function is a pathophysiological hallmark of atherosclerosis, characterized by the formation of foam cells and the maintenance of vascular inflammation. Mounting evidence supports that LKB1 plays a vital role in the regulation of macrophage function in atherosclerosis, including affecting lipid metabolism reprogramming, inflammation, endoplasmic reticulum stress, and autophagy in macrophages. Thus, decreased expression of LKB1 in atherosclerosis aggravates vascular injury by inducing excessive lipid deposition in macrophages and the formation of foam cells. To systematically understand the role and potential mechanism of LKB1 in regulating macrophage functions in atherosclerosis, this review summarizes the relevant data in this regard, hoping to provide new ideas for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xuewen Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Liang
- Department of Clinical Laboratory, Yueyang people’s Hospital, Yueyang, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanqiu Li
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Hongwei Lu, ; Shuhua Chen,
| |
Collapse
|
21
|
Bassot A, Prip-Buus C, Alves A, Berdeaux O, Perrier J, Lenoir V, Ji-Cao J, Berger MA, Loizon E, Cabaret S, Panthu B, Rieusset J, Morio B. Loss and gain of function of Grp75 or mitofusin 2 distinctly alter cholesterol metabolism, but all promote triglyceride accumulation in hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159030. [PMID: 34419589 DOI: 10.1016/j.bbalip.2021.159030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells. Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell. In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.
Collapse
Affiliation(s)
- Arthur Bassot
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Carina Prip-Buus
- Institut Cochin, Département d'Endocrinologie, Métabolisme et Diabète, INSERM U1016/CNRS UMR8104/Université de Paris, 75014 Paris, France.
| | - Anaïs Alves
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Olivier Berdeaux
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, Agrosup Dijon, F-21000 Dijon, France.
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Véronique Lenoir
- Institut Cochin, Département d'Endocrinologie, Métabolisme et Diabète, INSERM U1016/CNRS UMR8104/Université de Paris, 75014 Paris, France.
| | - Jingwei Ji-Cao
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Marie-Agnès Berger
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Emmanuelle Loizon
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Stephanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, Agrosup Dijon, F-21000 Dijon, France.
| | - Baptiste Panthu
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| |
Collapse
|
22
|
Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 2021; 47:101169. [PMID: 33484951 PMCID: PMC7887651 DOI: 10.1016/j.molmet.2021.101169] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global rise of metabolic disorders, such as obesity, type 2 diabetes, and cardiovascular disease, demands a thorough molecular understanding of the cellular mechanisms that govern health or disease. The endoplasmic reticulum (ER) is a key organelle for cellular function and metabolic adaptation and, therefore disturbed ER function, known as "ER stress," is a key feature of metabolic disorders. SCOPE OF REVIEW As ER stress remains a poorly defined phenomenon, this review provides a general guide to understanding the nature, etiology, and consequences of ER stress in metabolic disorders. We define ER stress by its type of stressor, which is driven by proteotoxicity, lipotoxicity, and/or glucotoxicity. We discuss the implications of ER stress in metabolic disorders by reviewing evidence implicating ER phenotypes and organelle communication, protein quality control, calcium homeostasis, lipid and carbohydrate metabolism, and inflammation as key mechanisms in the development of ER stress and metabolic dysfunction. MAJOR CONCLUSIONS In mammalian biology, ER is a phenotypically and functionally diverse platform for nutrient sensing, which is critical for cell type-specific metabolic control by hepatocytes, adipocytes, muscle cells, and neurons. In these cells, ER stress is a distinct, transient state of functional imbalance, which is usually resolved by the activation of adaptive programs such as the unfolded protein response (UPR), ER-associated protein degradation (ERAD), or autophagy. However, challenges to proteostasis also impact lipid and glucose metabolism and vice versa. In the ER, sensing and adaptive measures are integrated and failure of the ER to adapt leads to aberrant metabolism, organelle dysfunction, insulin resistance, and inflammation. In conclusion, the ER is intricately linked to a wide spectrum of cellular functions and is a critical component in maintaining and restoring metabolic health.
Collapse
Affiliation(s)
- Imke L Lemmer
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Nazia Hilal
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany; Department of Molecular Metabolism, 665 Huntington Avenue, Harvard T.H. Chan School of Public Health, 02115 Boston, MA, USA.
| |
Collapse
|