1
|
Khan MZ, Chen W, Li M, Ren W, Huang B, Kou X, Ullah Q, Wei L, Wang T, Khan A, Zhang Z, Li L, Wang C. Is there sufficient evidence to support the health benefits of including donkey milk in the diet? Front Nutr 2024; 11:1404998. [PMID: 39385792 PMCID: PMC11462490 DOI: 10.3389/fnut.2024.1404998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Donkey milk has attracted attention due to its distinctive nutritional composition and potential health advantages, particularly because of its whey protein content, which includes lysozyme, α-lactalbumin, lactoferrin, and β-lactoglobulin and vitamin C, among other components. These elements contribute to immunoregulatory, antimicrobial, antioxidant, and anti-inflammatory properties, positioning donkey milk as a possible therapeutic option. In addition, due to the low levels of caseins, the casein-to-whey protein ratio, and the β-lactoglobulin content in donkey milk, it presents an optimal alternative for infant formula for individuals with cow's milk allergies. Moreover, research into donkey milk's potential for cancer prevention, diabetes management, and as a treatment for various diseases is ongoing, thanks to its bioactive peptides and components. Nevertheless, challenges such as its low production yield and the not fully understood mechanisms behind its potential therapeutic role necessitate more thorough investigation. This review consolidates the existing knowledge on the therapeutic possibilities of donkey milk, emphasizing its importance for human health and the need for more detailed studies to confirm its health benefits.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Mengmeng Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wei Ren
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Lin Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Salamanna F, Contartese D, Errani C, Sartori M, Borsari V, Giavaresi G. Role of bone marrow adipocytes in bone metastasis development and progression: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1207416. [PMID: 37711896 PMCID: PMC10497772 DOI: 10.3389/fendo.2023.1207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose Bone marrow adipocytes (BMAs) are the most plentiful cells in the bone marrow and function as an endocrine organ by producing fatty acids, cytokines, and adipokines. Consequently, BMAs can interact with tumor cells, influencing both tumor growth and the onset and progression of bone metastasis. This review aims to systematically evaluate the role of BMAs in the development and progression of bone metastasis. Methods A comprehensive search was conducted on PubMed, Web of Science, and Scopus electronic databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement standards, to identify studies published from March 2013 to June 2023. Two independent reviewers assessed and screened the literature, extracted the data, and evaluated the quality of the studies. The body of evidence was evaluated and graded using the ROBINS-I tool for non-randomized studies of interventions and the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool for in vivo studies. The results were synthesized using descriptive methods. Results The search yielded a total of 463 studies, of which 17 studies were included in the final analysis, including 15 preclinical studies and two non-randomized clinical studies. Analysis of preclinical studies revealed that BMAs play a significant role in bone metastasis, particularly in prostate cancer followed by breast and malignant melanoma cancers. BMAs primarily influence cancer cells by inducing a glycolytic phenotype and releasing or upregulating soluble factors, chemokines, cytokines, adipokines, tumor-derived fatty acid-binding protein (FABP), and members of the nuclear receptor superfamily, such as chemokine (C-C motif) ligand 7 (CCL7), C-X-C Motif Chemokine Ligand (CXCL)1, CXCL2, interleukin (IL)-1β, IL-6, FABP4, and peroxisome proliferator-activated receptor γ (PPARγ). These factors also contribute to adipocyte lipolysis and regulate a pro-inflammatory phenotype in BMAs. However, the number of clinical studies is limited, and definitive conclusions cannot be drawn. Conclusion The preclinical studies reviewed indicate that BMAs may play a crucial role in bone metastasis in prostate, breast, and malignant melanoma cancers. Nevertheless, further preclinical and clinical studies are needed to better understand the complex role and relationship between BMAs and cancer cells in the bone microenvironment. Targeting BMAs in combination with standard treatments holds promise as a potential therapeutic strategy for bone metastasis.
Collapse
Affiliation(s)
- F. Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - D. Contartese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C. Errani
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M. Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V. Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - G. Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
3
|
Theinel MH, Nucci MP, Alves AH, Dias OFM, Mamani JB, Garrigós MM, Oliveira FA, Rego GNA, Valle NME, Cianciarullo G, Gamarra LF. The Effects of Omega-3 Polyunsaturated Fatty Acids on Breast Cancer as a Preventive Measure or as an Adjunct to Conventional Treatments. Nutrients 2023; 15:nu15061310. [PMID: 36986040 PMCID: PMC10052714 DOI: 10.3390/nu15061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
In order to understand how omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplements affect breast cancer prevention and treatment, a systematic review of articles published in the last 5 years in two databases was performed. Of the 679 articles identified, only 27 were included and examined based on five topics, taking into account: the induction type of the breast cancer used in animal models; the characteristics of the induction model by cell transplantation; the experimental design of the ω-3 supplementation—combined or not with a treatment antitumor drug; the fatty acids (FAs) composition used; the analysis of the studies’ outcomes. There are diverse and well-established animal models of breast cancer in the literature, with very relevant histological and molecular similarities depending on the specific objective of the study, such as whether the method of tumor induction was transgenic, by cell transplantation, or by oncogenic drugs. The analyses of outcomes were mainly focused on monitoring tumor growth, body/tumor weight, and molecular, genetic, or histological analyses, and few studies evaluated latency, survival, or metastases. The best results occurred when supplementation with ω-3 PUFA was associated with antitumor drugs, especially in the analysis of metastases and volume/weight of tumors or when the supplementation was started early and maintained for a long time. However, the beneficial effect of ω-3 PUFA supplementation when not associated with an antitumor agent remains unclear.
Collapse
Affiliation(s)
| | - Mariana P. Nucci
- LIM44–Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | | | | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
4
|
Accumulation of Arachidonic Acid, Precursor of Pro-Inflammatory Eicosanoids, in Adipose Tissue of Obese Women: Association with Breast Cancer Aggressiveness Indicators. Biomedicines 2022; 10:biomedicines10050995. [PMID: 35625732 PMCID: PMC9138452 DOI: 10.3390/biomedicines10050995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
While obesity is linked to cancer risk, no studies have explored the consequences of body mass index (BMI) on fatty acid profiles in breast adipose tissue and on breast tumor aggressiveness indicators. Because of this, 261 breast adipose tissue samples of women with invasive breast carcinoma were analyzed. Fatty acid profile was established by gas chromatography. For normal-weight women, major changes in fatty acid profile occurs after menopause, with the enrichment of long-chain polyunsaturated fatty acids (LC-PUFAs) of both n-6 and n-3 series enrichment, but a stable LC-PUFAs n-6/n-3 ratio across age. BMI impact was analyzed by age subgroups to overcome the age effect. BMI increase is associated with LC-PUFAs n-6 accumulation, including arachidonic acid. Positive correlations between BMI and several LC-PUFAs n-6 were observed, as well as a strong imbalance in the LC-PUFAs n-6/n-3 ratio. Regarding cancer, axillary lymph nodes (p = 0.02) and inflammatory breast cancer (p = 0.08) are more frequently involved in obese women. Increased BMI induces an LC-PUFAs n-6 accumulation, including arachidonic acid, in adipose tissue. This may participate in the development of low-grade inflammation in obese women and breast tumor progression. These results suggest the value of lifestyle and LC-PUFAs n-3 potential, in the context of obesity and breast cancer secondary/tertiary prevention.
Collapse
|
5
|
Deng J, Zhang D, Zhang W, Li J. Construction and Validation of New Nomograms to Predict Risk and Prognostic Factors of Breast Cancer Bone Metastasis in Asian Females: A Population-Based Retrospective Study. Int J Gen Med 2021; 14:8881-8902. [PMID: 34866932 PMCID: PMC8636465 DOI: 10.2147/ijgm.s335123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To construct a breast cancer bone-only metastasis (BCBM) risk and prognostic model for Asian females and provide a reference for treatment selection in breast cancer (BC) patients with bone-only metastasis (BM). Patients and Methods The data for newly diagnosed female patients of Asian Pacific Islander (API) ethnicity between 2010 and 2018 were obtained from the Surveillance, Epidemiology, and End Results database. A total of 16,972 patients were identified. Logistic regression analyses were used to establish a risk model for BCBM. Cox proportional hazards regression analyses were used to construct nomograms for the prognosis of BC and BCBM. Subsequently, the degree of discrimination of the nomogram was evaluated using the consistency index (C-index) and receiver operating curve. Results The main independent risk factors of BM in Asian females with BC were primary site surgery (p<0.0001), ER (p=0.0015), and T-stage (p=0.0046). The C-index values in the training and validation cohorts were 0.933 and 0.941, respectively. The main independent risk factors of the prognosis of BC were age (p<0.001), summary stage (p<0.001), and grade (p=0.002). The C-index values of 5-year overall survival (OS) in the training and validation cohorts were 0.823 and 0.804, respectively. The risk factors of the prognosis of Asian females with BCBM were subtype (p<0.001), histology (p<0.001), and grade (p=0.033). The C-index values of 5-year OS in the training and validation cohorts were 0.793 and 0.723, respectively. Conclusion Using population-based analysis, this study constructed a prediction model for the risk and prognosis of BM in Asian females with BC. Another newly constructed model was effective in predicting OS in BCBM patients. These models can help prevent skeletal-related events and weigh the risks and benefits of surgery for metastatic lesions in BCBM patients.
Collapse
Affiliation(s)
- Junsen Deng
- Department of Orthopedics Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| | - Di Zhang
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| | - Wenming Zhang
- Department of Orthopedics Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| | - Junhui Li
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| |
Collapse
|
6
|
Salamatullah AM, Subash-Babu P, Nassrallah A, Alshatwi AA, Alkaltham MS. Cyclotrisiloxan and β-Sitosterol rich Cassia alata (L.) flower inhibit HT-115 human colon cancer cell growth via mitochondrial dependent apoptotic stimulation. Saudi J Biol Sci 2021; 28:6009-6016. [PMID: 34588918 PMCID: PMC8459119 DOI: 10.1016/j.sjbs.2021.06.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer traits dependent chemo and radiotherapy display acute toxicity and long-term side effects. Since last two decades, researchers investigated a new anticancer agents derived from plants. Cassia alata (L.) is a medicinal herb distributed in the tropical and humid regions. In this study, C. alata flower methanol extract (CME) have been prepared using cold percolation method and the phytochemical components were identified using GC–MS analysis. CME have been used to study the antiproliferative and apoptosis properties against human colon cancer HT-115 colon cancer cells, its molecular mechanism have been explored. 0.2 mg/mL dose of CME, inhibited 50% of HT-115 colon cancer cell growth after 48hr was confirmed the significant antiproliferation effect. In normal cells such as Vero cells and hMSCs, 0.2 mg/mL dose of CME shown only 4% and 5% growth inhibition confirmed the HT-115 cell specific cytotoxic effect. This effect might be due to the availability of phytoactive biomolecules in CME such as, cyclotrisiloxan, beta-sitosterol and alpha-tocopherol have been confirmed by GC–MS. Most interestingly, PI and AO/ErBr staining of CME treated HT-115 cells shown early (25%), pro (17%) and late (8%) apoptotic and 3% necrotic cells after 48 hr. Treatment with CME extract showed potential effect on the inhibition of protumorigenic inflammatory and oxidative stress genes. Protumorigenic COX-2/PGE-2 and TNF-α/NF-κB immune axis were normalized after CME treatment. Amounts of both apoptosis related mRNA p53, Bax, caspase 3 and p21 genes were upregulated, whereas it resulted in significant reduction in the anti-apoptotic marker mdm2 and Bcl-2 genes. In conclusion, bioactive compounds present in CME potentially inhibit HT-115 colon cancer cell proliferation via an inhibition of protumorigenic immune axis and stimulation of mitochondria dependent apoptotic pathway without necrotic effect.
Collapse
Affiliation(s)
- Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - P Subash-Babu
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Amr Nassrallah
- Biochemistry Department Cairo University Research Park (CURP), Facility of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohammed Saeed Alkaltham
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Bellanger D, Dziagwa C, Guimaraes C, Pinault M, Dumas JF, Brisson L. Adipocytes Promote Breast Cancer Cell Survival and Migration through Autophagy Activation. Cancers (Basel) 2021; 13:cancers13153917. [PMID: 34359819 PMCID: PMC8345416 DOI: 10.3390/cancers13153917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Breast tumours are in direct contact with the adipose tissue of the mammary gland. Although the interactions between breast cancer cells and adipocytes that secrete tumour-promoting factors are well known, the molecular mechanisms remain under investigation. The aim of our study was to understand whether and how adipocytes regulate a cell-recycling pathway in breast cancer cells—autophagy. We show that adipocytes promote autophagy in breast cancer cells through the acidification of lysosomes, leading to cancer cell survival in nutrient-deprived conditions and to cancer cell migration. In this study, we have identified a new mechanism, which can link adipose tissue with breast cancer progression. Abstract White adipose tissue interacts closely with breast cancers through the secretion of soluble factors such as cytokines, growth factors or fatty acids. However, the molecular mechanisms of these interactions and their roles in cancer progression remain poorly understood. In this study, we investigated the role of fatty acids in the cooperation between adipocytes and breast cancer cells using a co-culture model. We report that adipocytes increase autophagy in breast cancer cells through the acidification of lysosomes, leading to cancer cell survival in nutrient-deprived conditions and to cancer cell migration. Mechanistically, the disturbance of membrane phospholipid composition with a decrease in arachidonic acid content is responsible for autophagy activation in breast cancer cells induced by adipocytes. Therefore, autophagy might be a central cellular mechanism of white adipose tissue interactions with cancer cells and thus participate in cancer progression.
Collapse
|