1
|
Lu YP, Wang XH, Xia B, Wu HW, Lei Y, Cai KW, Deng ZY, Tang C, Bai WB, Zhu T, Zheng ZH. C3G improves lipid droplet accumulation in the proximal tubules of high-fat diet-induced ORG mice. Pharmacol Res 2025; 211:107550. [PMID: 39675540 DOI: 10.1016/j.phrs.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Obesity-related glomerulopathy (ORG) represents an escalating public health with no effective treatments currently available. Abnormal lipid metabolism and lipid droplet deposition in the kidneys are key contributors to ORG. Cyanidin-3-glucoside (C3G) has shown potential in regulating lipid metabolism and may offer reno-protective effects; however, its therapeutic efficacy and underlying mechanisms in ORG remain unclear. An ORG mouse model was established, followed by an 8-week C3G intervention. The mice were divided into three groups: normal control (CT) group, ORG group, and C3G treatment group. Fecal 16S rRNA sequencing, metabolomics of feces-serum-kidney, and kidney single-cell RNA sequencing (scRNA-seq) were performed to investigate the effects and mechanisms of C3G. Compared to CT mice, ORG mice exhibited elevated serum CHO, TG, Cys-C, UACR, urinary Kim-1, and NAG levels, along with glomerular hypertrophy and tubular injury. These biochemical and pathological indicators improved following C3G treatment. Fecal 16S analysis revealed reduced gut microbiota diversity in ORG mice compared to CT mice, while C3G intervention increased gut microbiota diversity. Metabolic profiling of feces, serum, and kidney indicated reprogramming of glycerophospholipid metabolism in ORG mice, ameliorated by C3G treatment. Further analysis demonstrated that abnormal glycerophospholipid metabolites correlated with blood lipids, urinary protein, urinary tubular injury markers, and gut microbiota, specifically Lachnospiraceae and Blautia. Additionally, scRNA-seq analysis identified activation of the PPARγ/CD36 pathway in proximal tubule cells (PTCs) of ORG mice. C3G improved abnormal glycerophospholipid metabolism and alleviated injury in PTCs by inhibiting the PPARγ/CD36 pathway. C3G reduces lipid droplet accumulation in the PTCs of ORG mice by modulating the gut microbiota and inhibiting the PPARγ/CD36 pathway. These findings offer new insights and therapeutic targets for ORG.
Collapse
Affiliation(s)
- Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bin Xia
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wei-Bin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China.
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Shi C, Guo C, Wang S, Li W, Zhang X, Lu S, Ning C, Tan C. The mechanism of pectin in improving anthocyanin stability and the application progress of their complexes: A review. Food Chem X 2024; 24:101955. [PMID: 39568512 PMCID: PMC11577125 DOI: 10.1016/j.fochx.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Improving anthocyanin stability is a major challenge for the food industry. Studies have revealed that the interaction with pectin through non-covalent bonds can improve the anthocyanin stability, thus showing the potential to alleviate the above challenges. However, the interactions are highly complex and diverse. Thus, analyzing the effect of this interaction on anthocyanin stability is essential to promote anthocyanin-pectin complexes application in functional foods. Pectin can interact with anthocyanins through covalent and non-covalent interactions, and these interactions are affected by their structure, the external environment, and the processing methods. Through their interaction with pectin, the thermal, color, and storage stability of anthocyanins are improved, enhancing their bioavailability in the gastrointestinal and facilitating their application range in food processing. This review provides a theoretical reference for improving anthocyanin stability and increasing the application range of anthocyanin-pectin complexes.
Collapse
Affiliation(s)
- Chenyang Shi
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chongting Guo
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Wang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Weixuan Li
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Xue Zhang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Lu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chong Ning
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chang Tan
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| |
Collapse
|
3
|
Sharma A, Lee HJ. A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2024; 13:1389. [PMID: 39594531 PMCID: PMC11590959 DOI: 10.3390/antiox13111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a silent threat to human health, with prevalence rising at an alarming rate. The treatment and prevention of NAFLD depend on novel approaches as no effective treatment options are currently available. Berries are unique sources of phenolic compounds that have proven roles in disease prevention and health promotion. However, a comprehensive review of the effects of different berries on NAFLD and related pathologies is lacking. Thus, the present review aims to summarize the effects of berry extracts, plant parts, and bioactive compounds from twenty-one different berries on NAFLD. The molecular mechanisms involved include the regulation of lipid homeostasis, modulation of oxidative stress and inflammation markers, and activation of different signaling pathways in different in vitro and in vivo NAFLD models. Furthermore, their modulatory effects on the gut microbiota have also been highlighted. Clinical intervention research on the benefits of berries in NAFLD is limited; nonetheless, this paper discusses clinical studies demonstrating the effects of different berries in people with NAFLD. Future research should focus on long-term clinical studies to compare the therapeutic potentials of different berries against NAFLD.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bio Nano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bio Nano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Kumar AR, Nair B, Kamath AJ, Nath LR, Calina D, Sharifi-Rad J. Impact of gut microbiota on metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma: pathways, diagnostic opportunities and therapeutic advances. Eur J Med Res 2024; 29:485. [PMID: 39367507 PMCID: PMC11453073 DOI: 10.1186/s40001-024-02072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) and progression to hepatocellular carcinoma (HCC) exhibits distinct molecular and immune characteristics. These traits are influenced by multiple factors, including the gut microbiome, which interacts with the liver through the "gut-liver axis". This bidirectional relationship between the gut and its microbiota and the liver plays a key role in driving various liver diseases, with microbial metabolites and immune responses being central to these processes. Our review consolidates the latest research on how gut microbiota contributes to MASH development and its progression to HCC, emphasizing new diagnostic and therapeutic possibilities. We performed a comprehensive literature review across PubMed/MedLine, Scopus, and Web of Science from January 2000 to August 2024, focusing on both preclinical and clinical studies that investigate the gut microbiota's roles in MASH and HCC. This includes research on pathogenesis, as well as diagnostic and therapeutic advancements related to the gut microbiota. This evidence emphasizes the critical role of the gut microbiome in the pathogenesis of MASH and HCC, highlighting the need for further clinical studies and trials. This is to refine diagnostic techniques and develop targeted therapies that exploit the microbiome's capabilities, aiming to enhance patient care in liver diseases.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health. Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
García-Beltrán A, Lozano Melero A, Martínez Martínez R, Porres Foulquie JM, López Jurado Romero de la Cruz M, Kapravelou G. A Systematic Review of the Beneficial Effects of Berry Extracts on Non-Alcoholic Fatty Liver Disease in Animal Models. Nutr Rev 2024:nuae132. [PMID: 39365946 DOI: 10.1093/nutrit/nuae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries and is strongly associated with several metabolic disorders. Plant-derived bioactive extracts, such as berry extracts, with high antioxidant capacity have been used for the treatment and prevention of this pathology. Moreover, they promote circular economy and sustainability. OBJECTIVE To study the beneficial effects of extracts from different parts of berry plants in animal models of NAFLD. DATA SOURCES A systematic research of the MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2011. In vivo animal studies of NAFLD were included in which berry extracts of different parts of the plant were administered and significantly improved altered biomarkers related to the pathology, such as lipid metabolism and hepatic steatosis, glucose and glycogen metabolism, and antioxidant and anti-inflammatory biomarkers. DATA EXTRACTION Of a total of 203 articles identified, 31 studies were included after implementation of the inclusion and exclusion criteria. DATA ANALYSIS Most of the studies showed a decrease in steatosis and a stimulation of genes related to β-oxidation and downregulation of lipogenic genes, with administration of berry extracts. Berry extracts also attenuated inflammation and oxidative stress. CONCLUSIONS Administration of berry extracts seems to have promising potential in the design of enriched foodstuffs or nutraceuticals for the treatment of NAFLD.
Collapse
Affiliation(s)
- Alejandro García-Beltrán
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Aida Lozano Melero
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | | | | | - Garyfallia Kapravelou
- Department of Physiology, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52005 Granada, Spain
| |
Collapse
|
6
|
Xiong X, Liu Z, Che X, Zhang X, Li X, Gao W. Chemical composition, pharmacological activity and development strategies of Rubus chingii: A review. CHINESE HERBAL MEDICINES 2024; 16:313-326. [PMID: 39072206 PMCID: PMC11283228 DOI: 10.1016/j.chmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Raspberries are used for both food and medicine, but it has not yet attracted widespread attention. In this paper, the chemical constituen of the original plant raspberry. R. chingii is one of the new "Zhe Bawei" medicinal materials selected in 2017. "Zhe Bawei" refers to eight kinds of genuine medicinal materials in Zhejiang Province. The chemical constituents, pharmacological effects, processing, and application of Rubus chingii Hu were reviewed to provide a reference for its further development. Relevant literature in recent years was collected in databases such as China Knowledge Network, Web of Science, Elsevier, PubMed, and X-Mol, using "raspberry", "Rubus chingii", "traditional use", "chemical composition", "pharmacology", etc. as keywords individually or in combination. The summary of pharmacological activities shows that the relationship between the pharmacological activities of raspberry is still not deep enough. More in-depth research should be carried out in this direction to explore the mechanism of action of its active ingredients and provide effective reference for the further development of the raspberry industry. In the future, with the participation of more researchers, it is expected to develop innovative drugs based on raspberry for the treatment of diseases.
Collapse
Affiliation(s)
- Xiangmei Xiong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Zheng Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Xiance Che
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Xuemin Zhang
- Key Laboratory of Advanced Chinese Medicine Resources Research Enterprises, Tianjin 300402, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Wenyuan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| |
Collapse
|
7
|
Świeca M, Reguła J, Molska M, Jarocki P, Murat J, Pytka M, Wessely-Szponder J. Adzuki and Mung Bean Sprouts Enriched with Probiotic Lactiplantibacillus plantarum 299v Improve Body Mass Gain and Antioxidant Status and Reduce the Undesirable Enzymatic Activity of Microbiota in Healthy Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:270-276. [PMID: 38358639 DOI: 10.1007/s11130-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Introducing and establishing new food requires a detailed evaluation of its safety, nutritional value and functionality, thus the control and probiotic-rich adzuki and mung bean sprouts were studied in an in vivo rats model. However, the total feed intake did not differ significantly between the groups, the highest body weight gain and body weight change were recorded in the control AIN diet. At the same time, the addition of legume sprouts caused a reduction of these parameters (up to 25% in the variant with probiotic-rich adzuki bean sprouts). There was no significant effect on serum morphology, except white blood cells (ca. 20% reduction in the control sprout-supplemented diets). Serum and liver antiradical properties were significantly elevated by consuming mung bean sprouts (no effect of the probiotics). The faecal lactic acid bacteria were already increased by the control sprouts (a 2.8- and 2.1-fold increase for adzuki and mung bean sprouts, respectively). The probiotic-rich sprouts further improved this parameter. The diets enriched with mung bean sprouts significantly decreased the urease (by ca. 65%) and β-glucuronidase activities (by ca. 30%). All the tested diets caused also a significant reduction of faecal tryptophanase activity (the effect was intensified by Lactiplantibacillus plantarum 299v). The functional components did not affect negatively the nutritional parameters and blood morphological characteristics. They improved also the antioxidant potential and significantly decreased the activities of colon cancer-related enzymes (urease and tryptophanase). The results confirmed that these new probiotic carriers may be a valuable, safe and functional element of a healthy diet.
Collapse
Affiliation(s)
- Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland.
| | - Julita Reguła
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
| | - Marta Molska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
- Department of Dietetics, Faculty of Physical Culture in Gorzów Wlkp, Poznan University of Physical Education, Estkowskiego 13, Gorzów Wielkopolski, 66-400, Poland
| | - Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Jakub Murat
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| |
Collapse
|
8
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
9
|
Fotschki B, Sójka M, Kosmala M, Juśkiewicz J. Prebiotics Together with Raspberry Polyphenolic Extract Mitigate the Development of Nonalcoholic Fatty Liver Diseases in Zucker Rats. Nutrients 2023; 15:3115. [PMID: 37513533 PMCID: PMC10385479 DOI: 10.3390/nu15143115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies suggested that dietary supplementation with prebiotic fructooligosaccharides (FOSs) and polyphenols could mitigate disorders related to the first stage of nonalcoholic fatty liver disease (NAFLD) induced by an obesogenic diet. Therefore, this experiment aimed to address whether the health-promoting potential of raspberry polyphenols together with FOSs can regulate advanced-stage NAFLD in Zucker rats genetically predisposed to develop obesity. The addition of FOSs and raspberry polyphenolic extract to the diet reduced liver fat accumulation and triglyceride, free fatty acid, and total cholesterol levels in the liver. The elevated GSH/GSSG ratio and reduced malondialdehyde content indicated that the liver antioxidant potential was considerably increased. The treatment also lowered the plasma aminotransferase and alkaline phosphatase activities and collagen type IV levels. Insulin levels were decreased, but glucose levels remained constant, indicating greater insulin sensitivity. These changes may result from the upregulation of FXR and AHR receptors in the liver, which are responsible for regulating lipid metabolism and glucose and bile acid synthesis. The reduced bile acid levels in the cecal contents confirmed the activation of liver mechanisms. In conclusion, dietary enrichment with FOSs and raspberry polyphenolic extract has sufficient health-promoting potential to regulate liver metabolism, oxidative stress, and inflammation related to NAFLD development in obese Zucker rats.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland
| | - Michał Sójka
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
10
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
11
|
Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed Pharmacother 2023; 159:114300. [PMID: 36696803 DOI: 10.1016/j.biopha.2023.114300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1β) were down-regulated after FOS treatment. CONCLUSION FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.
Collapse
|
12
|
Dose-Related Regulatory Effect of Raspberry Polyphenolic Extract on Cecal Microbiota Activity, Lipid Metabolism and Inflammation in Rats Fed a Diet Rich in Saturated Fats. Nutrients 2023; 15:nu15020354. [PMID: 36678224 PMCID: PMC9865883 DOI: 10.3390/nu15020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The amount of berry polyphenols required to exert health-promoting effects seems to be difficult to achieve by fresh fruit ingestion, so polyphenol-rich extracts could be considered a dietary alternative. In the present study, laboratory rats were fed high-fat diets supplemented with 0.1 or 0.3% raspberry polyphenols from pomace, with the former dose reflecting the amount of polyphenols consumed with a glass of fresh raspberries. It was hypothesized that beneficial changes in blood and hepatic tissue related to lipid metabolism would accompany both treatments, but the health-promoting effect would be more noticeable with the higher dose of extract. This hypothesis was confirmed, and the high dose of raspberry polyphenols was better than the low dose extract in terms of decreased epididymal white adipose tissue weight, hepatic triglyceride content, PPARγ and SREBP-1c expression in the liver, and plasma IL-6 concentration, as well as increased acetic acid concentration in the cecal digesta. These effects might be partially associated with the enhanced content of ellagitannin and anthocyanin metabolites found in the blood plasma of rats administered the high dose of the extract. The results showed that this extract could be considered a dietary vehicle to provide an amount of raspberry polyphenols that could promote health.
Collapse
|
13
|
He B, Dai L, Jin L, Liu Y, Li X, Luo M, Wang Z, Kai G. Bioactive components, pharmacological effects, and drug development of traditional herbal medicine Rubus chingii Hu (Fu-Pen-Zi). Front Nutr 2023; 9:1052504. [PMID: 36698464 PMCID: PMC9868258 DOI: 10.3389/fnut.2022.1052504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Rubus chingii Hu (Chinese Raspberry), known as Fu-Pen-Zi in Chinese, a woody perennial plant of the genus Rubus in the Rosaceae family, has specific nutritional and medicinal values, which is considered food-medicine herb in China for thousands of years to treat impotence, premature ejaculation, enuresis, frequent urination, and other diseases. This review aims to summarize recent advances in the bioactive components, pharmacological effects, and drug development and utilization of Rubus chingii Hu, hoping to provide useful support for its further research and clinical application. The bioactive components in Rubus chingii Hu contain mainly terpenoids, flavonoids, alkaloids, phenolic acids, polysaccharides, and steroids. The main pharmacological effects are their anti-oxidant, anti-inflammatory, and anti-tumor capacity on human health. Rubus chingii Hu is a very valuable food-medicine herb. The development of Rubus chingii Hu-related drugs is relatively single, which is limited to traditional Chinese medicine and prescriptions. Therefore, it is vital to pay interest to Rubus chingii Hu and its bioactive components in the future and extend its scientific application.
Collapse
Affiliation(s)
- Beihui He
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linghao Dai
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Jin
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Liu
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaojuan Li
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Minmin Luo
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhian Wang
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, China
| | - Guoyin Kai
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Fotschki B, Wiczkowski W, Sawicki T, Sójka M, Myszczyński K, Ognik K, Juśkiewicz J. Stimulation of the intestinal microbiota with prebiotics enhances hepatic levels of dietary polyphenolic compounds, lipid metabolism and antioxidant status in healthy rats. Food Res Int 2022; 160:111754. [DOI: 10.1016/j.foodres.2022.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
|
15
|
Dworzański W, Cholewińska E, Fotschki B, Juśkiewicz J, Ognik K. Oxidative, epigenetic changes and fermentation processes in the intestine of rats fed high-fat diets supplemented with various chromium forms. Sci Rep 2022; 12:9817. [PMID: 35701510 PMCID: PMC9198011 DOI: 10.1038/s41598-022-13328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to determine how feeding rats a high-fat diet (F) supplemented with various forms of chromium affects the responses of the immune and redox systems, as well as epigenetic changes in the ileal tissue and the course of fermentation processes in the caecum. The rats received a pharmacologically relevant dose 0.3 mg Cr/kg body weight in form of chromium(III) picolinate (Cr-Pic), chromium (III)-methionine (Cr-Met), or chromium nanoparticles (Cr-NPs). The F increased DNA oxidation and raised the level of interleukin IL-6. The F was shown to reduce the intensity of fermentation processes in the caecum while increasing the activity of potentially harmful enzymes in the faeces. The addition of Cr in the form of Cr-NPs and Cr-Met in rats fed F beneficially increased mobilization of enzymes of the DNA repair pathway. All forms of Cr, but especially Cr-NPs, beneficially decreased the activity of caecal bacterial β-glucuronidase, faecal β-glucosidase and β-glucuronidase. However, due to the increase in level of cytokine IL-2 in small intestinal wall, induced by all tested forms of chromium, it is difficult to state conclusively that this element can mitigate unfavourable pro-inflammatory and oxidative changes induced by a F in the small intestinal wall.
Collapse
Affiliation(s)
- Wojciech Dworzański
- Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
16
|
Pectic polysaccharides: Targeting gut microbiota in obesity and intestinal health. Carbohydr Polym 2022; 287:119363. [DOI: 10.1016/j.carbpol.2022.119363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
|
17
|
Russo E, Fiorindi C, Giudici F, Amedei A. Immunomodulation by probiotics and prebiotics in hepatocellular carcinoma. World J Hepatol 2022; 14:372-385. [PMID: 35317185 PMCID: PMC8891667 DOI: 10.4254/wjh.v14.i2.372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary malignancy in patients suffering from chronic liver diseases and cirrhosis. Recent attention has been paid to the involvement of the gut-liver axis (GLA) in HCC pathogenesis. This axis results from a bidirectional, anatomical and functional relationship between the gastrointestinal system and the liver. Moreover, the complex network of interactions between the intestinal microbiome and the liver plays a crucial role in modulation of the HCC-tumor microenvironment, contributing to the pathogenesis of HCC by exposing the liver to pathogen-associated molecular patterns, such as bacterial lipopolysaccharides, DNA, peptidoglycans and flagellin. Indeed, the alteration of gut microflora may disturb the intestinal barrier, bringing several toll-like receptor ligands to the liver thus activating the inflammatory response. This review explores the new therapeutic opportunities that may arise from novel insights into the mechanisms by which microbiota immunomodulation, represented by probiotics, and prebiotics, affects HCC through the GLA.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| | - Camila Fiorindi
- Department of Health Professions, Dietary Production Line and Nutrition, University Hospital of Careggi, Florence 50134, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| |
Collapse
|