1
|
Peixoto TC, Quitete FT, Teixeira AVS, Martins BC, Soares RDA, Atella GC, Bertasso IM, Lisboa PC, Resende AC, Mucci DDB, Souza-Mello V, Martins FF, Daleprane JB. Palm and interesterified palm oil-enhanced brown fat whitening contributes to metabolic dysfunction in C57BL/6J mice. Nutr Res 2024; 133:94-107. [PMID: 39705913 DOI: 10.1016/j.nutres.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Palm oil is widely used in the food industry owing to its high stability and versatility. The interesterified version has been used as an alternative to oils rich in trans fatty acids. However, the health effects of these vegetable oils are not yet fully understood. We hypothesized that the consumption of palm oil (noninteresterified and interesterified), even without excessive amounts of energy and lipids in the diet, could lead to morphofunctional changes in brown adipose tissue (BAT). To this end, male C57BL/6J mice were divided into 3 dietary groups (n = 10 each): soybean oil (SO), palm oil (PO), and interesterified palm oil (IPO) for 10 weeks. The PO and IPO groups had significant increases in the visceral fat mass and interscapular BAT (iBAT) lipid content. In iBAT, the PO and IPO groups showed lower mRNA expression of Ucp1, Adrb3, and Pgc1a, while the PO also showed lower mRNA levels of Ppara and Ampk, and the IPO showed lower Prdm16 expression. Moreover, PO had higher Il6 expression and lower catalase activity, while the IPO showed an upregulated Tnfa expression and lower catalase activity, but higher antioxidant activity of the glutathione peroxidase (GPx) enzyme. The consumption of PO and IPO had negative effects on weight and body fat, including the impairment of iBAT function. Our findings give rise to apprehensions regarding the safety and consequences of consuming PO and IPO for energy metabolism.
Collapse
Affiliation(s)
- Thamara Cherem Peixoto
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fernanda Torres Quitete
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ananda Vitoria Silva Teixeira
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ricardo de Andrade Soares
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daniela de Barros Mucci
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Morphology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Rosell-Moll E, My NTK, Balbuena-Pecino S, Montblanch M, Rodríguez I, Gutiérrez J, Garcia de la Serrana D, Capilla E, Navarro I. Morphofunctional characterization of the three main adipose tissue depots in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111039. [PMID: 39396638 DOI: 10.1016/j.cbpb.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Visceral adipose tissue (VAT) is the primary fat reservoir and energy source in fish. Other relevant fat depots include subcutaneous adipose tissue (SAT), located under epithelial layers, and intramuscular adipose tissue (IMAT), found between the myotomes. The present study investigates the morphological, gene expression and functional characteristics of these different depots in rainbow trout (Oncorhynchus mykiss). Commercial rainbow trout of two different average weights were sampled for histology, lipid quantification and fatty acids profile. Mature adipocytes were isolated for gene expression analyses of lipid metabolic markers. Both VAT and SAT showed large adipocytes, and high total lipid content, suggesting hypertrophic growth. Adipocytes in IMAT were consistently smaller regardless of fish size. While fatty acid composition was similar across depots, SAT had lower levels of palmitic acid and higher levels of polyunsaturated fatty acids that act as precursors of phospholipids and eicosanoids such as eicosapentaenoic acid, compared to VAT and IMAT. Gene expression analyses revealed higher levels of fatty acid transporters, lipolysis and β-oxidation markers in VAT and SAT compared to IMAT, suggesting a more active lipid metabolism. These data support the role of VAT as the main energy depot, while SAT may act as a secondary reservoir, and IMAT potentially serves as an occasional energy source for muscles. This study provides valuable insights into the distinct properties of the different fat depots in fish, which may help to optimize strategies to modulate adiposity for improved health, metabolism, and product quality.
Collapse
Affiliation(s)
- E Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - N T K My
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - M Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Rodríguez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - D Garcia de la Serrana
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - E Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Athipornchai A, Changklungmoa N, Kueakhai P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals (Basel) 2024; 17:220. [PMID: 38399435 PMCID: PMC10892392 DOI: 10.3390/ph17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The ability of oil supplementation to inhibit various metabolic syndromes has been recognized. However, there are currently no studies determining the effects of oil supplements on healthy conditions. Plukenetia volubilis L., also known as Sacha inchi, is a seed rich in essential unsaturated fatty acids that improves metabolic syndrome diseases, such as obesity and nonalcoholic fatty liver. However, the health benefits and effects of Sacha inchi oil (SIO) supplementation remain unclear. This study aims to evaluate the chemical effects and properties of Sacha inchi oil. The results of the chemical compound analysis showed that Sacha inchi is an abundant source of ω-3 fatty acids, with a content of 44.73%, and exhibits scavenging activity of 240.53 ± 11.74 and 272.41 ± 6.95 µg Trolox/g, determined via DPPH and ABTS assays, respectively, while both olive and lard oils exhibited lower scavenging activities compared with Sacha inchi. Regarding liver histology, rats given Sacha inchi supplements showed lower TG accumulation and fat droplet distribution in the liver than those given lard supplements, with fat areas of approximately 14.19 ± 6.49% and 8.15 ± 2.40%, respectively. In conclusion, our findings suggest that Sacha inchi oil is a plant source of ω-3 fatty acids and antioxidants and does not induce fatty liver and pathology in the kidney, pancreas, and spleen. Therefore, it has the potential to be used as a dietary supplement to improve metabolic syndrome diseases.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Anan Athipornchai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| |
Collapse
|
4
|
Laget J, Cortijo I, Boukhaled JH, Muyor K, Duranton F, Jover B, Raynaud F, Lajoix AD, Argilés À, Gayrard N. Cafeteria Diet-Induced Obesity Worsens Experimental CKD. Nutrients 2023; 15:3331. [PMID: 37571269 PMCID: PMC10421241 DOI: 10.3390/nu15153331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a significant risk factor for chronic kidney disease (CKD). This study aimed to evaluate the impact of obesity on the development of kidney fibrosis in a model of cafeteria diet rats undergoing 5/6th nephrectomy (SNx). Collagen 1, 3, and 4 expression, adipocyte size, macrophage number, and the expression of 30 adipokines were determined. Collagen 1 expression in kidney tissue was increased in Standard-SNx and Cafeteria-SNx (7.1 ± 0.6% and 8.9 ± 0.9 tissue area, respectively). Renal expression of collagen 3 and 4 was significantly increased (p < 0.05) in Cafeteria-SNx (8.6 ± 1.5 and 10.9 ± 1.9% tissue area, respectively) compared to Cafeteria (5.2 ± 0.5 and 6.3 ± 0.6% tissue area, respectively). Adipocyte size in eWAT was significantly increased by the cafeteria diet. In Cafeteria-SNx, we observed a significant increase in macrophage number in the kidney (p = 0.01) and a consistent tendency in eWAT. The adipokine level was higher in the Cafeteria groups. Interleukin 11, dipeptidyl peptidase 4, and serpin 1 were increased in Cafeteria-SNx. In the kidney, collagen 3 and 4 expressions and the number of macrophages were increased in Cafeteria-SNx, suggesting an exacerbation by preexisting obesity of CKD-induced renal inflammation and fibrosis. IL11, DPP4, and serpin 1 can act directly on fibrosis and participate in the observed worsening CKD.
Collapse
Affiliation(s)
- Jonas Laget
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| | - Irene Cortijo
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| | - Juliana H. Boukhaled
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| | - Karen Muyor
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| | - Flore Duranton
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| | - Bernard Jover
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| | - Fabrice Raynaud
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France;
| | - Anne-Dominique Lajoix
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, 34090 Montpellier, France;
| | - Àngel Argilés
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| | - Nathalie Gayrard
- RD-Néphrologie, 34090 Montpellier, France; (J.L.); (I.C.); (J.H.B.); (K.M.); (F.D.); (B.J.); (À.A.)
| |
Collapse
|
5
|
Effects of Backfat Thickness on Oxidative Stress and Inflammation of Placenta in Large White Pigs. Vet Sci 2022; 9:vetsci9060302. [PMID: 35737354 PMCID: PMC9230826 DOI: 10.3390/vetsci9060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the impact of the backfat thickness of sows on reproductive performance and on lipid metabolism, oxidative stress, and inflammation. At farrowing, 60 sows were assigned to three groups: the low-backfat-thickness group (LBF, n = 20): sows’ backfat thickness was between 9 and 12 mm; the medium-backfat-thickness group (MBF, n = 20): sows’ backfat thickness was between 13 and 20 mm; and the high-backfat-thickness group (HBF, n = 20): sows’ backfat thickness was between 21 and 25 mm. Maternal and fetal blood and placental samples were collected. Compared with the LBF and HBF groups, the MBF group delivered a significantly greater number of live piglets than the LBF or HBF groups. The different backfat thicknesses of sows had different effects on the lipid-related hormones and adipokines of maternal and fetal serum and placenta. Sows with poor or excessive backfat displayed higher levels of oxidative stress and higher levels of pro-inflammatory cytokines. According to these data, the thickness of a sow’s backfat affects the characteristics of farrowing piglets and their lipid metabolism, as well as placental inflammation, maternal inflammation, and oxidative stress. A moderate backfat thickness (between 13 and 20 mm) was associated with greater reproductive performance in sows.
Collapse
|
6
|
Vigor C, Balas L, Guy A, Bultel-Poncé V, Reversat G, Galano JM, Durand T, Oger C. Isoprostanoids, Isofuranoids and Isoketals ‐ From Synthesis to Lipidomics. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claire Vigor
- Institut des Biomolecules Max Mousseron Bioactive Lipid Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Laurence Balas
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Alexandre Guy
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Valérie Bultel-Poncé
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard1919 route de Mende 34293 Montpellier FRENCH POLYNESIA
| | - Guillaume Reversat
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Jean-Marie Galano
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Camille Oger
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| |
Collapse
|