1
|
Ulla A, Ozaki K, Rahman MM, Nakao R, Uchida T, Maru I, Mawatari K, Fukawa T, Kanayama HO, Sakakibara I, Hirasaka K, Nikawa T. Morin improves dexamethasone-induced muscle atrophy by modulating atrophy-related genes and oxidative stress in female mice. Biosci Biotechnol Biochem 2022; 86:1448-1458. [PMID: 35977398 DOI: 10.1093/bbb/zbac140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 11/12/2022]
Abstract
This study investigated the effect of morin, a flavonoid, on dexamethasone-induced muscle atrophy in C57BL/6J female mice. Dexamethasone (10 mg/kg body weight) for 10 days significantly reduced body weight, gastrocnemius and tibialis anterior muscle mass, and muscle protein in mice. Dexamethasone significantly upregulated muscle atrophy-associated ubiquitin ligases, including atrogin-1 and MuRF-1, and the upstream transcription factors FoxO3a and Klf15. Additionally, dexamethasone significantly induced the expression of oxidative stress-sensitive ubiquitin ligase Cbl-b and the accumulation of the oxidative stress markers malondialdehyde and advanced protein oxidation products in both the plasma and skeletal muscle samples. Intriguingly, morin treatment (20 mg/kg body weight) for 17 days effectively attenuated the loss of muscle mass and muscle protein and suppressed the expression of ubiquitin ligases while reducing the expression of upstream transcriptional factors. Therefore, morin might act as a potential therapeutic agent to attenuate muscle atrophy by modulating atrophy inducing genes and preventing oxidative stress.
Collapse
Affiliation(s)
- Anayt Ulla
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Kanae Ozaki
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Md Mizanur Rahman
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Isafumi Maru
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoya Fukawa
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
2
|
Yang S, Li Y, Liu C, Wu Y, Wan Z, Shen D. Pathogenesis and treatment of wound healing in patients with diabetes after tooth extraction. Front Endocrinol (Lausanne) 2022; 13:949535. [PMID: 36213270 PMCID: PMC9538860 DOI: 10.3389/fendo.2022.949535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a common systematic chronic disease amongst dental patients. The elevated glucose microenvironment can prolong the healing of tooth extraction sockets. Therefore, the promotion of healing up tooth extraction sockets is of great clinical importance to the patients with diabetes mellitus. The current evidence indicates the mechanism of the recovery period of extraction sockets in hyperglycaemia conditions from physiological, inflammation, immune, endocrine and neural aspects. New advancements have been made in varied curative approaches and drugs in the management of wound healing of tooth extraction sockets in diabetes. However, most of the interventions are still in the stage of animal experiments, and whether it can be put into clinical application still needs further explorations. Specifically, our work showed topical administration of plasma-rich growth factor, advanced platelet-rich fibrin, leukocyte- and platelet-rich fibrin and hyaluronic acid as well as maxillary immediate complete denture is regarded as a promising approach for clinical management of diabetic patients requiring extractions. Overall, recent studies present a blueprint for new advances in novel and effective approaches for this worldwide health ailment and tooth extraction sockets healing.
Collapse
|