1
|
Wu Y, Li H, Miao Y, Peng J, Wei H. Effects of Methionine Restriction from Different Sources on Sperm Quality in Aging Mice. Nutrients 2023; 15:4782. [PMID: 38004176 PMCID: PMC10675477 DOI: 10.3390/nu15224782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Decreased sperm quality causing poor pregnancy outcomes in aging males is a common problem. The aim of this study was to investigate the ameliorative effect of methionine restriction on sperm quality in aging mice, using methionine or 2-hydroxy-4-(methylthio)butanoate (HMTBA) as the methionine source, with a view to providing nutritional strategies to mitigate the decline in sperm quality in aging livestock. Fifty-one 6-week-old male mice were randomly divided into four groups: the non-aging group (NA, 0.86% methionine), the control diet group (CD, 0.86% methionine), the methionine-restricted group (MR, 0.17% methionine) and the HMTBA-restricted group (HR, 0.17% methionine). The mice in the CD, MR and HR groups were injected with a daily dose of 0.25 mL/20 g body weight of 10% D-galactose to establish an aging model. The test period was 42 days. The results showed that aging mice in the CD group had impaired testicular morphology and significantly decreased sperm quality compared to those in the NA group. Aging mice in the MR and HR groups showed attenuated impaired testicular morphology and improved sperm quality, especially sperm acrosomal integrity and membrane integrity, compared to mice in the CD group. In addition, mice in the MR and HR groups had reduced testicular inflammation and oxidative stress, increased spermidine levels, and reduced sperm RNA N6-methyladenosine (m6A) and DNA 5-methylcytosine (5mC) levels. Spermidine levels were positively correlated, whereas sperm RNA m6A and DNA 5mC levels were negatively correlated with sperm quality parameters. Our study suggests that methionine restriction alleviates the decline in sperm quality in aging mice, which may be related to changes in methionine metabolism and inhibition of sperm DNA and RNA methylation.
Collapse
Affiliation(s)
- Yinghui Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (Y.M.); (J.P.)
| | - Hao Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (Y.M.); (J.P.)
| | - Yueyue Miao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (Y.M.); (J.P.)
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (Y.M.); (J.P.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (Y.M.); (J.P.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
2
|
Fang H, Stone KP, Wanders D, Forney LA, Gettys TW. The Origins, Evolution, and Future of Dietary Methionine Restriction. Annu Rev Nutr 2022; 42:201-226. [PMID: 35588443 PMCID: PMC9936953 DOI: 10.1146/annurev-nutr-062320-111849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Laura A Forney
- Department of Kinesiology, Houston Baptist University, Houston, Texas, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
3
|
Serpente P, Zhang Y, Islimye E, Hart-Johnson S, Gould AP. Quantification of fetal organ sparing in maternal low-protein dietary models. Wellcome Open Res 2022; 6:218. [PMID: 35634534 PMCID: PMC9120932 DOI: 10.12688/wellcomeopenres.17124.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Maternal malnutrition can lead to fetal growth restriction. This is often associated with organ sparing and long-lasting physiological dysfunctions during adulthood, although the underlying mechanisms are not yet well understood. Methods: Low protein (LP) dietary models in C57BL/6J mice were used to investigate the proximal effects of maternal malnutrition on fetal organ weights and organ sparing at embryonic day 18.5 (E18.5). Results: Maternal 8% LP diet induced strikingly different degrees of fetal growth restriction in different animal facilities, but adjustment of dietary protein content allowed similar fetal body masses to be obtained. A maternal LP diet that restricted fetal body mass by 40% did not decrease fetal brain mass to the same extent, reflecting positive growth sparing of this organ. Under these conditions, fetal pancreas and liver mass decreased by 60-70%, indicative of negative organ sparing. A series of dietary swaps between LP and standard diets showed that the liver is capable of efficient catch-up growth from as late as E14.5 whereas, after E10.5, the pancreas is not. Conclusions: This study highlights that the reproducibility of LP fetal growth restriction studies between laboratories can be improved by careful calibration of maternal dietary protein content. LP diets that induce 30-40% restriction of prenatal growth provide a good model for fetal organ sparing. For the liver, recovery of growth following protein restriction is efficient throughout fetal development but, for the pancreas, transient LP exposures spanning the progenitor expansion phase lead to an irreversible fetal growth deficit.
Collapse
Affiliation(s)
- Patricia Serpente
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| | - Ying Zhang
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Eva Islimye
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah Hart-Johnson
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
- Biological Research Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Alex P. Gould
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
4
|
Rome FI, Hughey CC. Disrupted Liver Oxidative Metabolism in Glycine N-Methyltransferase-Deficient Mice is Mitigated by Dietary Methionine Restriction. Mol Metab 2022; 58:101452. [PMID: 35121169 PMCID: PMC8866067 DOI: 10.1016/j.molmet.2022.101452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
|
5
|
Khan MS, Spann RA, Münzberg H, Yu S, Albaugh VL, He Y, Berthoud HR, Morrison CD. Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients 2021; 13:4103. [PMID: 34836357 PMCID: PMC8620426 DOI: 10.3390/nu13114103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.S.K.); (R.A.S.); (H.M.); (S.Y.); (V.L.A.); (Y.H.); (H.-R.B.)
| |
Collapse
|
6
|
Fang H, Stone KP, Forney LA, Wanders D, Gettys TW. Nutritional Regulation of Hepatic FGF21 by Dietary Restriction of Methionine. Front Endocrinol (Lausanne) 2021; 12:773975. [PMID: 34917032 PMCID: PMC8669746 DOI: 10.3389/fendo.2021.773975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
FGF21 is a potent metabolic regulator of energy balance, body composition, lipid metabolism, and glucose homeostasis. Initial studies reported that it was increased by fasting and the associated increase in ketones, but more recent work points to the importance of dietary protein and sensing of essential amino acids in FGF21 regulation. For example, dietary restriction of methionine produces a rapid transcriptional activation of hepatic FGF21 that results in a persistent 5- to 10-fold increase in serum FGF21. Although FGF21 is a component of a complex transcriptional program activated by methionine restriction (MR), loss-of-function studies show that FGF21 is an essential mediator of the resulting effects of the MR diet on energy balance, remodeling of adipose tissue, and enhancement of insulin sensitivity. These studies also show that FGF21 signaling in the brain is required for the MR diet-induced increase in energy expenditure (EE) and reduction of adiposity. Collectively, the evidence supports the view that the liver functions as a sentinel to detect and respond to changes in dietary amino acid composition, and that the resulting mobilization of hepatic FGF21 is a key element of the homeostatic response. These findings raise the interesting possibility that therapeutic diets could be developed that produce sustained, biologically effective increases in FGF21 by nutritionally modulating its transcription and release.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Laura A. Forney
- Department of Kinesiology, Houston Baptist University, Houston, TX, United States
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- *Correspondence: Thomas W. Gettys,
| |
Collapse
|