1
|
Clavreul A, Guette C, Lasla H, Rousseau A, Blanchet O, Henry C, Boissard A, Cherel M, Jézéquel P, Guillonneau F, Menei P, Lemée JM. Proteomics of tumor and serum samples from isocitrate dehydrogenase-wildtype glioblastoma patients: is the detoxification of reactive oxygen species associated with shorter survival? Mol Oncol 2024. [PMID: 38803161 DOI: 10.1002/1878-0261.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Proteomics has been little used for the identification of novel prognostic and/or therapeutic markers in isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GB). In this study, we analyzed 50 tumor and 30 serum samples from short- and long-term survivors of IDH-wildtype GB (STS and LTS, respectively) by data-independent acquisition mass spectrometry (DIA-MS)-based proteomics, with the aim of identifying such markers. DIA-MS identified 5422 and 826 normalized proteins in tumor and serum samples, respectively, with only three tumor proteins and 26 serum proteins displaying significant differential expression between the STS and LTS groups. These dysregulated proteins were principally associated with the detoxification of reactive oxygen species (ROS). In particular, GB patients in the STS group had high serum levels of malate dehydrogenase 1 (MDH1) and ribonuclease inhibitor 1 (RNH1) and low tumor levels of fatty acid-binding protein 7 (FABP7), which may have enabled them to maintain low ROS levels, counteracting the effects of the first-line treatment with radiotherapy plus concomitant and adjuvant temozolomide. A blood score built on the levels of MDH1 and RNH1 expression was found to be an independent prognostic factor for survival based on the serum proteome data for a cohort of 96 IDH-wildtype GB patients. This study highlights the utility of circulating MDH1 and RNH1 biomarkers for determining the prognosis of patients with IDH-wildtype GB. Furthermore, the pathways driven by these biomarkers, and the tumor FABP7 pathway, may constitute promising therapeutic targets for blocking ROS detoxification to overcome resistance to chemoradiotherapy in potential GB STS.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU d'Angers, France
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
| | - Catherine Guette
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Hamza Lasla
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
- SIRIC ILIAD, Institut de Recherche en Santé, Université de Nantes, France
| | - Audrey Rousseau
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- Département de Pathologie, CHU d'Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, CHU d'Angers, France
| | - Cécile Henry
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Alice Boissard
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Mathilde Cherel
- Département de Biologie Médicale, Centre Eugène Marquis, Unicancer, Rennes, France
| | - Pascal Jézéquel
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
- SIRIC ILIAD, Institut de Recherche en Santé, Université de Nantes, France
| | - François Guillonneau
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU d'Angers, France
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU d'Angers, France
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
| |
Collapse
|
2
|
Walelign S, Lyu Z, Harada KH. Unsolved relationship between PFAS exposure and glioma incidence: Comments on "Glioma is associated with exposure to legacy and alternative per- and polyfluoroalkyl substances". JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134070. [PMID: 38552396 DOI: 10.1016/j.jhazmat.2024.134070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sosina Walelign
- Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 6068501, Japan; Department of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa 1000, Ethiopia
| | - Zhaoqing Lyu
- Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 6068501, Japan
| | - Kouji H Harada
- Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 6068501, Japan.
| |
Collapse
|
3
|
Wang B, Starr AL, Fraser HB. Cell-type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. eLife 2024; 12:RP89594. [PMID: 38358392 PMCID: PMC10942608 DOI: 10.7554/elife.89594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Hunter B Fraser
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
4
|
Liu RZ, Choi WS, Jain S, Xu X, Elsherbiny ME, Glubrecht DD, Tessier AG, Easaw JC, Fallone BG, Godbout R. Stationary-to-migratory transition in glioblastoma stem-like cells driven by a fatty acid-binding protein 7-RXRα neurogenic pathway. Neuro Oncol 2023; 25:2177-2190. [PMID: 37499046 PMCID: PMC10708933 DOI: 10.1093/neuonc/noad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) stem-like cells (GSCs) are crucial drivers of treatment resistance and tumor recurrence. While the concept of "migrating" cancer stem cells was proposed a decade ago, the roles and underlying mechanisms of the heterogeneous populations of GSCs remain poorly defined. METHODS Cell migration using GBM cell lines and patient-derived GSCs was examined using Transwell inserts and the scratch assay. Single-cell RNA sequencing data analysis were used to map GSC drivers to specific GBM cell populations. Xenografted mice were used to model the role of brain-type fatty acid-binding protein 7 (FABP7) in GBM infiltration and expansion. The mechanism by which FABP7 and its fatty acid ligands promote GSC migration was examined by gel shift and luciferase gene reporter assays. RESULTS A subpopulation of FABP7-expressing migratory GSCs was identified, with FABP7 upregulating SOX2, a key modulator for GBM stemness and plasticity, and ZEB1, a prominent factor in GBM epithelial-mesenchymal transition and invasiveness. Our data indicate that GSC migration is driven by nuclear FABP7 through activation of RXRα, a nuclear receptor activated by polyunsaturated fatty acids (PUFAs). CONCLUSION Infiltrative progression in GBM is driven by migratory GSCs through activation of a PUFA-FABP7-RXRα neurogenic pathway.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Won-Shik Choi
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Saket Jain
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Xia Xu
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | | | - Darryl D Glubrecht
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Jacob C Easaw
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - B Gino Fallone
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
5
|
Wang B, Starr AL, Fraser HB. Cell type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541747. [PMID: 37292820 PMCID: PMC10245923 DOI: 10.1101/2023.05.22.541747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell type-specific cis-regulatory changes. We find that cell type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
6
|
Zhou J, Kong YS, Vincent KM, Dieters‐Castator D, Bukhari AB, Glubrecht D, Liu R, Quilty D, Findlay SD, Huang X, Xu Z, Yang RZ, Zhang L, Tang E, Lajoie G, Eisenstat DD, Gamper AM, Fahlman R, Godbout R, Postovit L, Fu Y. RNA cytosine methyltransferase NSUN5 promotes protein synthesis and tumorigenic phenotypes in glioblastoma. Mol Oncol 2023; 17:1763-1783. [PMID: 37057706 PMCID: PMC10483612 DOI: 10.1002/1878-0261.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. The standard treatment achieves a median overall survival for GBM patients of only 15 months. Hence, novel therapies based on an increased understanding of the mechanistic underpinnings of GBM are desperately needed. In this study, we show that elevated expression of 28S rRNA (cytosine-C(5))-methyltransferase NSUN5, which methylates cytosine 3782 of 28S rRNA in GBM cells, is strongly associated with the poor survival of GBM patients. Moreover, we demonstrate that overexpression of NSUN5 increases protein synthesis in GBM cells. NSUN5 knockdown decreased protein synthesis, cell proliferation, sphere formation, migration, and resistance to temozolomide in GBM cell lines. NSUN5 knockdown also decreased the number and size of GBM neurospheres in vitro. As a corollary, mice harboring U251 tumors wherein NSUN5 was knocked down survived longer than mice harboring control tumors. Taken together, our results suggest that NSUN5 plays a protumorigenic role in GBM by enabling the enhanced protein synthesis requisite for tumor progression. Accordingly, NSUN5 may be a hitherto unappreciated target for the treatment of GBM.
Collapse
Affiliation(s)
- Jiesi Zhou
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yan Shu Kong
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Krista M. Vincent
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | | | - Amirali B. Bukhari
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Darryl Glubrecht
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Rong‐Zong Liu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Douglas Quilty
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonONCanada
| | - Scott D. Findlay
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Xiaowei Huang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Rui Zhe Yang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Lanyue Zhang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Emily Tang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Gilles Lajoie
- Department of BiochemistryWestern UniversityLondonONCanada
| | - David D. Eisenstat
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Armin M. Gamper
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Lynne‐Marie Postovit
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonONCanada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
7
|
Abstract
Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States;
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina;
| |
Collapse
|
8
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
9
|
Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res 2022; 87:101178. [PMID: 35780915 DOI: 10.1016/j.plipres.2022.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and the isoforms are segregated according to their tissue origins. Several isoforms, such as adipose-FABP and epidermal-FABP, have been shown to participate in multiple pathologic processes due to their ubiquitous expression. Intestinal fatty acid binding protein, also termed FABP2 or I-FABP, is specifically expressed in the small intestine. FABP2 can traffic lipids from the intestinal lumen to enterocytes and bind superfluous fatty acids to maintain a steady pool of fatty acids in the epithelium. As a lipid chaperone, FABP2 can also carry lipophilic drugs to facilitate targeted transport. When the integrity of the intestinal epithelium is disrupted, FABP2 is released into the circulation. Thus, it can potentially serve as a clinical biomarker. In this review, we discuss the pivotal role of FABP2 in intestinal lipid metabolism. We also summarize the molecular interactions that have been reported to date, highlighting the clinical prospects of FABP2 research.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youci Zhou
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|