1
|
Post A, Groothof D, Kremer D, Knobbe TJ, Abma W, Koops CA, Tsikas D, Wallimann T, Dullaart RPF, Franssen CFM, Kema IP, Heiner-Fokkema MR, Bakker SJL. Creatine homeostasis and the kidney: comparison between kidney transplant recipients and healthy controls. Amino Acids 2024; 56:42. [PMID: 38869518 PMCID: PMC11176230 DOI: 10.1007/s00726-024-03401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Creatine is a natural nitrogenous organic acid that is integral to energy metabolism and crucial for proper cell functioning. The kidneys are involved in the first step of creatine production. With kidney transplantation being the gold-standard treatment for end-stage kidney disease, kidney transplant recipients (KTR) may be at risk of impaired creatine synthesis. We aimed to compare creatine homeostasis between KTR and controls. Plasma and urine concentrations of arginine, glycine, guanidinoacetate, creatine and creatinine were measured in 553 KTR and 168 healthy controls. Creatine intake was assessed using food frequency questionnaires. Iothalamate-measured GFR data were available in subsets of 157 KTR and 167 controls. KTR and controls had comparable body weight, height and creatine intake (all P > 0.05). However, the total creatine pool was 14% lower in KTR as compared to controls (651 ± 178 vs. 753 ± 239 mmol, P < 0.001). The endogenous creatine synthesis rate was 22% lower in KTR as compared to controls (7.8 ± 3.0 vs. 10.0 ± 4.1 mmol per day, P < 0.001). Despite lower GFR, the plasma guanidinoacetate and creatine concentrations were 21% and 41% lower in KTR as compared to controls (both P < 0.001). Urinary excretion of guanidinoacetate and creatine were 66% and 59% lower in KTR as compared to controls (both P < 0.001). In KTR, but not in controls, a higher measured GFR was associated with a higher endogenous creatine synthesis rate (std. beta: 0.21, 95% CI: 0.08; 0.33; P = 0.002), as well as a higher total creatine pool (std. beta: 0.22, 95% CI: 0.11; 0.33; P < 0.001). These associations were fully mediated (93% and 95%; P < 0.001) by urinary guanidinoacetate excretion which is consistent with production of the creatine precursor guanidinoacetate as rate-limiting factor. Our findings highlight that KTR have a disturbed creatine homeostasis as compared to controls. Given the direct relationship of measured GFR with endogenous creatine synthesis rate and the total creatine pool, creatine supplementation might be beneficial in KTR with low kidney function.Trial registration ID: NCT02811835.Trial registration URL: https://clinicaltrials.gov/ct2/show/NCT02811835 .
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands.
| | - Dion Groothof
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Tim J Knobbe
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Willem Abma
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Christa A Koops
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Robin P F Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Casper F M Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| |
Collapse
|
2
|
Marini ACB, Schincaglia RM, Candow DG, Pimentel GD. Effect of Creatine Supplementation on Body Composition and Malnutrition-Inflammation Score in Hemodialysis Patients: An Exploratory 1-Year, Balanced, Double-Blind Design. Nutrients 2024; 16:615. [PMID: 38474743 PMCID: PMC10934827 DOI: 10.3390/nu16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Hemodialysis has a detrimental effect on fat-free mass (FFM) and muscle strength over time. Thus, we aimed to evaluate the effect of creatine supplementation on the body composition and Malnutrition-Inflammation Score (MIS) in patients with chronic kidney disease (CKD) undergoing hemodialysis. An exploratory 1-year balanced, placebo-controlled, and double-blind design was conducted with hemodialysis patients (≥18 years). The creatine group (CG) received 5 g of creatine monohydrate and 5 g of maltodextrin per day and the placebo group (PG) received 10 g of maltodextrin per day. MIS and body composition were analyzed at three time points: pre, intermediate (after 6 months), and post (after 12 months). After 6 months, 60% of patients on creatine experienced an increase in FFM compared to a 36.8% increase for those on placebo. Moreover, 65% of patients on creatine increased their skeletal muscle mass index (SMMI) compared to only 15.8% for those on placebo. Creatine increased intracellular water (ICW) in 60% of patients. MIS did not change after the intervention. In the CG, there was an increase in body weight (p = 0.018), FFM (p = 0.010), SMMI (p = 0.022). CG also increased total body water (pre 35.4 L, post 36.1 L; p = 0.008), mainly due to ICW (pre 20.2 L, intermediate 20.7 L, post 21.0 L; p = 0.016). Long-term creatine supplementation in hemodialysis patients did not attenuate the MIS, but enhanced FFM and SMMI, which was likely triggered by an increase in ICW.
Collapse
Affiliation(s)
- Ana Clara B. Marini
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| | - Raquel M. Schincaglia
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gustavo D. Pimentel
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| |
Collapse
|
3
|
Huang N, Jiang H, Zhang Y, Sun X, Li Y, Wei Y, Yang J, Zhao Y. Amniotic fluid metabolic fingerprinting contributes to shaping the unfavourable intrauterine environment in monochorionic diamniotic twins. Clin Nutr 2024; 43:111-123. [PMID: 38035859 DOI: 10.1016/j.clnu.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND & AIMS Amniotic fluid (AF) is the primary intrauterine environment for fetal growth throughout gestation. Selective fetal growth restriction (sFGR) is an adverse complication characterized by unequal growth in twins with nearly identical genetic makeup. However, the influence of AF-mediated intrauterine environment on the development and progression of sFGR remains unexplored. METHODS High-throughput targeted metabolomics analysis (G350) was performed on AF samples collected from sFGR (n = 18) and MCDA twins with birth weight concordance (MCDA-C, n = 20) cases. Weighted correlation network analysis (WGCNA) was used to identify clinical features that may influence the metabolite composition in AF. Subsequently, partial least-squares discriminant analysis (PLS-DA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to compare the different types of sFGR and MCDA-C twins. Receiver operating characteristic (ROC) and multivariate ROC curves were utilized to explore potential AF markers in twins with sFGR. RESULTS In our study, 182 metabolites were quantified in 76 AF samples. WGCNA indicated that the metabolite composition in late AF may not be influenced by gestational age. PLSDA demonstrated distinct variations between the metabolite profiles of AF in the sFGR and MCDA-C twins, with a significant emphasis on amino acids as the primary differential metabolite. The dissimilarities observed in sFGR twins were predominantly attributed to lipid metabolism-related metabolites. In particular, the KEGG enrichment metabolic pathway analysis revealed significant associations of both types of sFGR twins with central carbon metabolism in cancer. The multivariate ROC curves indicated that the combination of carnosine, sarcosine, l-alanine, beta-alanine, and alpha-n-phenylacetylglutamine significantly improved the AUC to 0.928. Notably, the ROC curves highlighted creatine (AUC:0.934) may be a potential biomarker for severe sFGR. CONCLUSION The data presented in this study offer a comprehensive metabolic map of the AF in cases of sFGR, shedding light on potential biomarkers associated with fetal growth and development in MCDA twins.
Collapse
Affiliation(s)
- Nana Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Youzhen Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Xiya Sun
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Yixin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| |
Collapse
|
4
|
Hayashi O, Nakamura S, Sugiura T, Hasegawa S, Tsuka Y, Takahashi N, Kikuchi S, Matsumura K, Okumiya T, Baden M, Shiojima I. Diagnostic accuracy and clinical usefulness of erythrocyte creatine content to predict the improvement of anaemia in patients receiving maintenance haemodialysis. BMC Nephrol 2023; 24:1. [PMID: 36597041 PMCID: PMC9808937 DOI: 10.1186/s12882-022-03055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The improvement of anaemia over time by erythropoiesis stimulating agent (ESA) is associated with better survival in haemodialysis patients. We previously reported that erythrocyte creatine content, a marker of erythropoietic capacity, was a reliable marker to estimate the effectiveness of ESA. The aim of this study was to examine the accuracy and clinical usefulness of erythrocyte creatine content to predict the improvement of anaemia in haemodialysis patients. METHODS ESA dose was fixed 3 months prior to the enrollment and was maintained throughout the study period. Erythrocyte creatine content and haematologic indices were measured at baseline in 92 patients receiving maintenance haemodialysis. Haemoglobin was also measured 3 months after. Improvement of anaemia was defined as ≥ 0.8 g/dL change in haemoglobin from baseline to 3 months. RESULTS Erythrocyte creatine content was significantly higher in 32 patients with improvement of anaemia compared to 60 patients with no improvement of anaemia (2.47 ± 0.74 vs. 1.57 ± 0.49 μmol/gHb, P = 0.0001). When 9 variables (erythrocyte creatine content, ESA dose, reticulocyte, haptoglobin, haemoglobin at baseline, serum calcium, intact parathyroid hormone, transferrin saturation and serum ferritin) were used in the multivariate logistic regression analysis, erythrocyte creatine emerged as the most important variable associated with the improvement of anaemia (P = 0.0001). The optimal cut-off point of erythrocyte creatine content to detect the improvement of anaemia was 1.78 μmol/gHb (Area under the curve: 0.86). Sensitivity and specificity of erythrocyte creatine content to detect the improvement of anaemia were 90.6% and 83.3%. CONCLUSION Erythrocyte creatine content is a reliable marker to predict the improvement of anaemia 3 months ahead in patients receiving maintenance haemodialysis.
Collapse
Affiliation(s)
- Ohki Hayashi
- Department of Nephrology and Cardiology, Takarazuka Hospital, 2-1-2 Nogami, Takarazuka, 665-0022 Hyogo, Japan
| | - Seishi Nakamura
- Department of Nephrology and Cardiology, Takarazuka Hospital, 2-1-2 Nogami, Takarazuka, 665-0022 Hyogo, Japan
| | - Tetsuro Sugiura
- grid.410783.90000 0001 2172 5041Department of Internal Medicine II, Kansai Medical University, Osaka, Japan
| | - Shun Hasegawa
- Department of Nephrology and Cardiology, Takarazuka Hospital, 2-1-2 Nogami, Takarazuka, 665-0022 Hyogo, Japan
| | - Yoshiaki Tsuka
- Department of Nephrology and Cardiology, Takarazuka Hospital, 2-1-2 Nogami, Takarazuka, 665-0022 Hyogo, Japan
| | - Nobuyuki Takahashi
- grid.410783.90000 0001 2172 5041Department of Nephrology, Kansai Medical University Kori Hospital, Osaka, Japan
| | - Sanae Kikuchi
- grid.410783.90000 0001 2172 5041Department of Internal Medicine II, Kansai Medical University, Osaka, Japan
| | - Koichiro Matsumura
- grid.258622.90000 0004 1936 9967Cardiovascular Medicine, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Toshika Okumiya
- Department of Medical Laboratory Science, Kochi Gakuen University, Kochi, Japan
| | - Masato Baden
- Department of Nephrology and Cardiology, Takarazuka Hospital, 2-1-2 Nogami, Takarazuka, 665-0022 Hyogo, Japan
| | - Ichiro Shiojima
- grid.410783.90000 0001 2172 5041Department of Internal Medicine II, Kansai Medical University, Osaka, Japan
| |
Collapse
|
5
|
Kreider RB, Jäger R, Purpura M. Bioavailability, Efficacy, Safety, and Regulatory Status of Creatine and Related Compounds: A Critical Review. Nutrients 2022; 14:nu14051035. [PMID: 35268011 PMCID: PMC8912867 DOI: 10.3390/nu14051035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
In 2011, we published a paper providing an overview about the bioavailability, efficacy, and regulatory status of creatine monohydrate (CrM), as well as other “novel forms” of creatine that were being marketed at the time. This paper concluded that no other purported form of creatine had been shown to be a more effective source of creatine than CrM, and that CrM was recognized by international regulatory authorities as safe for use in dietary supplements. Moreover, that most purported “forms” of creatine that were being marketed at the time were either less bioavailable, less effective, more expensive, and/or not sufficiently studied in terms of safety and/or efficacy. We also provided examples of several “forms” of creatine that were being marketed that were not bioavailable sources of creatine or less effective than CrM in comparative effectiveness trials. We had hoped that this paper would encourage supplement manufacturers to use CrM in dietary supplements given the overwhelming efficacy and safety profile. Alternatively, encourage them to conduct research to show their purported “form” of creatine was a bioavailable, effective, and safe source of creatine before making unsubstantiated claims of greater efficacy and/or safety than CrM. Unfortunately, unsupported misrepresentations about the effectiveness and safety of various “forms” of creatine have continued. The purpose of this critical review is to: (1) provide an overview of the physiochemical properties, bioavailability, and safety of CrM; (2) describe the data needed to substantiate claims that a “novel form” of creatine is a bioavailable, effective, and safe source of creatine; (3) examine whether other marketed sources of creatine are more effective sources of creatine than CrM; (4) provide an update about the regulatory status of CrM and other purported sources of creatine sold as dietary supplements; and (5) provide guidance regarding the type of research needed to validate that a purported “new form” of creatine is a bioavailable, effective and safe source of creatine for dietary supplements. Based on this analysis, we categorized forms of creatine that are being sold as dietary supplements as either having strong, some, or no evidence of bioavailability and safety. As will be seen, CrM continues to be the only source of creatine that has substantial evidence to support bioavailability, efficacy, and safety. Additionally, CrM is the source of creatine recommended explicitly by professional societies and organizations and approved for use in global markets as a dietary ingredient or food additive.
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-972-458-1498
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI 53202, USA; (R.J.); (M.P.)
| | | |
Collapse
|
6
|
Machado M. Should we use urinary creatinine to evaluate patients supplemented with creatine? J Sports Med Phys Fitness 2021; 62:1286. [PMID: 34931791 DOI: 10.23736/s0022-4707.21.13557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marco Machado
- Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, UNIG Campus V at Itaperuna, Itaperuna, Brazil -
| |
Collapse
|
7
|
Evaluation of recombinant human erythropoietin responsiveness by measuring erythrocyte creatine content in haemodialysis patients. BMC Nephrol 2021; 22:413. [PMID: 34895154 PMCID: PMC8666014 DOI: 10.1186/s12882-021-02623-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Background One of the main causes of anaemia in patients with end-stage renal disease is relative deficiency in erythropoietin production. Eythropoiesis stimulating agent (ESA), a potent haematopoietic growth factor, is used to treat anaemia in haemodialysis patients. The effect of ESA is usually assessed by haematological indices such as red blood cell count, haemoglobin concentration and haematocrit, but erythrocyte indices do not provide information of the rapid change in erythropoietic activity. As erythrocyte creatine directly assess erythropoiesis, the aim of this study was to evaluate the effect of ESA in haemodialysis patients by measuring the erythrocyte creatine content. Methods ESA dose was fixed 3 months prior to the enrollment and was maintained throughout the entire study period. Erythrocyte creatine was measured with haematologic indices in 83 haemodialysis patients. Haemoglobin was also measured 3 months after. Results ESA dose (152.4 ± 62.9 vs. 82.2 ± 45.5 units/kg/week, P = 0.0001) and erythrocyte creatine (2.07 ± 0.73 vs. 1.60 ± 0.41 μmol/gHb, p = 0.0003) were significantly higher in 27 patients with haemoglobin <10 g/dL compared to 56 patients with haemoglobin ≥10 g/dL. There was a fair correlation between ESA dose and the concentration of creatine in the erythrocytes (r = 0.55, P < 0.0001). Increase in haemoglobin (>0.1 g/dL) was observed in 37 patients, whereas haemoglobin did not increase in 46 patients. Erythrocyte creatine levels were significantly higher in those patients with an increase in haemoglobin compared to those without (2.04 ± 0.64 vs. 1.52 ± 0.39 μmol/gHb, p < 0.0001). When 8 variables (ESA dose, erythropoietin resistance index, C-reactive protein, intact parathyroid hormone, iron supplementation, presence of anaemia, erythrocyte creatine and reticulocyte) were used in the multivariate logistic analysis, erythrocyte creatine levels emerged as the most important variable associated with increase in haemoglobin (Chi-square = 6.19, P = 0.01). Conclusion Erythrocyte creatine, a useful marker of erythropoietic capacity, is a reliable marker to estimate ameliorative effectiveness of ESA in haemodialysis patients.
Collapse
|