1
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
2
|
Aamir AB, Kumari R, Latif R, Ahmad S, Rafique N, Salem AM, Alasoom LI, Alsunni A, Alabdulhadi AS, Chander S. Effects of intermittent fasting and caloric restriction on inflammatory biomarkers in individuals with obesity/overweight: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2024:e13838. [PMID: 39289905 DOI: 10.1111/obr.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Obesity is characterized by chronic low-grade inflammation. This study presents an updated systematic review and meta-analysis on the effect of caloric restriction (CR) and intermittent fasting (IF) on plasma inflammatory biomarkers (C-reactive protein [CRP], tumor necrosis factor [TNF]-alpha, and interleukin [IL]-6) in individuals with obesity/overweight compared with unrestricted or ad libitum feeding. METHODS PubMed, Web of Science, and SCOPUS databases were searched for randomized controlled trials (RCTs) reporting inflammatory biomarkers after at least 8 weeks of intervention. Standardized mean differences (SMDs) were calculated using a fixed effect model. Heterogeneity was determined using I2 statistics. Sensitivity analysis was conducted using the "leave-one-out" approach. RESULTS Relatively few RCTs have investigated the effect of IF on inflammatory biomarkers than with CR (6 vs. 15). Analysis of pooled data showed that CR was associated with a significant reduction in CRP with low heterogeneity (SMD -0.15 mg/L [95% CI -0.30 to -0.00], p = 0.04; I2 = 0%, p = 0.69) and IL-6 with high heterogeneity (SMD -0.31 pg/mL [95% CI -0.51 to -0.10], p = 0.004; I2 = 73%, p = 0.001). IF was associated with a significant decrease in TNF-alpha with moderate heterogeneity (SMD -0.32 pg/mL [95% CI -0.63 to -0.02], p = 0.04; I2 = 44%, p = 0.13). No associations were detected between IF and CRP or IL-6 and CR and TNF-alpha. CONCLUSION CR may be more effective in reducing chronic low-grade inflammation than IF. However, there were some concerns regarding the included studies' randomization and allocation sequence concealment process.
Collapse
Affiliation(s)
- Ahmad Bin Aamir
- Punjab Medical College, Faisalabad Medical University, Faisalabad, Pakistan
| | - Roopa Kumari
- Department of Surgical Pathology, Mayo Clinic Rochester, MN, USA
| | - Rabia Latif
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shakil Ahmad
- Directorate of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nazish Rafique
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ayad M Salem
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lubna I Alasoom
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed Alsunni
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aseel S Alabdulhadi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Subhash Chander
- Department of Critical Care Medicine, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
3
|
Liu X, Wu Y, Bennett S, Zou J, Xu J, Zhang L. The Effects of Different Dietary Patterns on Bone Health. Nutrients 2024; 16:2289. [PMID: 39064732 PMCID: PMC11280484 DOI: 10.3390/nu16142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Bone metabolism is a process in which osteoclasts continuously clear old bone and osteoblasts form osteoid and mineralization within basic multicellular units, which are in a dynamic balance. The process of bone metabolism is affected by many factors, including diet. Reasonable dietary patterns play a vital role in the prevention and treatment of bone-related diseases. In recent years, dietary patterns have changed dramatically. With the continuous improvement in the quality of life, high amounts of sugar, fat and protein have become a part of people's daily diets. However, people have gradually realized the importance of a healthy diet, intermittent fasting, calorie restriction, a vegetarian diet, and moderate exercise. Although these dietary patterns have traditionally been considered healthy, their true impact on bone health are still unclear. Studies have found that caloric restriction and a vegetarian diet can reduce bone mass, the negative impact of a high-sugar and high-fat dietary (HSFD) pattern on bone health is far greater than the positive impact of the mechanical load, and the relationship between a high-protein diet (HPD) and bone health remains controversial. Calcium, vitamin D, and dairy products play an important role in preventing bone loss. In this article, we further explore the relationship between different dietary patterns and bone health, and provide a reference for how to choose the appropriate dietary pattern in the future and for how to prevent bone loss caused by long-term poor dietary patterns in children, adolescents, and the elderly. In addition, this review provides dietary references for the clinical treatment of bone-related diseases and suggests that health policy makers should consider dietary measures to prevent and treat bone loss.
Collapse
Affiliation(s)
- Xiaohua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Yangming Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
4
|
Peng Y, Zhong Z, Huang C, Wang W. The effects of popular diets on bone health in the past decade: a narrative review. Front Endocrinol (Lausanne) 2024; 14:1287140. [PMID: 38665424 PMCID: PMC11044027 DOI: 10.3389/fendo.2023.1287140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 04/28/2024] Open
Abstract
Bone health encompasses not only bone mineral density but also bone architecture and mechanical properties that can impact bone strength. While specific dietary interventions have been proposed to treat various diseases such as obesity and diabetes, their effects on bone health remain unclear. The aim of this review is to examine literature published in the past decade, summarize the effects of currently popular diets on bone health, elucidate underlying mechanisms, and provide solutions to neutralize the side effects. The diets discussed in this review include a ketogenic diet (KD), a Mediterranean diet (MD), caloric restriction (CR), a high-protein diet (HP), and intermittent fasting (IF). Although detrimental effects on bone health have been noticed in the KD and CR diets, it is still controversial, while the MD and HP diets have shown protective effects, and the effects of IF diets are still uncertain. The mechanism of these effects and the attenuation methods have gained attention and have been discussed in recent years: the KD diet interrupts energy balance and calcium metabolism, which reduces bone quality. Ginsenoside-Rb2, metformin, and simvastatin have been shown to attenuate bone loss during KD. The CR diet influences energy imbalance, glucocorticoid levels, and adipose tissue, causing bone loss. Adequate vitamin D and calcium supplementation and exercise training can attenuate these effects. The olive oil in the MD may be an effective component that protects bone health. HP diets also have components that protect bone health, but their mechanism requires further investigation. In IF, animal studies have shown detrimental effects on bone health, while human studies have not. Therefore, the effects of diets on bone health vary accordingly.
Collapse
Affiliation(s)
- Yue Peng
- China Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zikang Zhong
- China Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Huang
- Department of Orthopaedic Surgery, China Japan Friendship Hospital, Beijing, China
| | - Weiguo Wang
- Department of Orthopaedic Surgery, China Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Ahmadi AR, Shirani F, Abiri B, Siavash M, Haghighi S, Akbari M. Impact of omega-3 fatty acids supplementation on the gene expression of peroxisome proliferator activated receptors- γ, α and fibroblast growth factor-21 serum levels in patients with various presentation of metabolic conditions: a GRADE assessed systematic review and dose-response meta-analysis of clinical trials. Front Nutr 2023; 10:1202688. [PMID: 38035345 PMCID: PMC10684744 DOI: 10.3389/fnut.2023.1202688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
There is some debate about the effects of omega-3 fatty acids on the regulation of adipose tissue related genes. This systematic review and meta-analysis aimed to evaluate the effects of omega-3 fatty acids supplementation on the gene expression of peroxisome proliferator activated receptors (PPAR-α and PPAR-γ) and serum fibroblast growth factor-21 (FGF-21) levels in adults with different presentation of metabolic conditions. To identify eligible studies, a systematic search was conducted in the Cochrane Library of clinical trials, Medline, Scopus, ISI Web of Science, and Google Scholar up to April 2022. Eligibility criteria included a clinical trial design, omega-3 fatty acids supplementation in adults, and reporting of at least one of the study outcomes. Effect sizes were synthesized using either fixed or random methods based on the level of heterogeneity. Fifteen studies met the inclusion criteria. Omega-3 fatty acids supplementation significantly increased the PPAR-γ (10 studies) and PPAR-α (2 studies) gene expression compared to the control group (WMD: 0.24; 95% CI: 0.12, 0.35; p < 0.001 and 0.09; 95% CI: 0.04, 0.13; p < 0.001, respectively). Serum FGF-21 (8 studies) levels exhibited no significant change following omega-3 fatty acids supplementation (p = 0.542). However, a dose-response relationship emerged between the dose of omega-3 fatty acids and both PPAR-γ gene expression and serum FGF-21 levels. Overall, this study suggests that omega-3 fatty acids supplementation may have positive effects on the regulation of adipose tissue related genes in patients with various presentation of metabolic condition. Further research is needed to validate these findings and ascertain the effectiveness of this supplementation approach in this population. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?, CRD42022338344.
Collapse
Affiliation(s)
| | - Fatemeh Shirani
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnazi Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansoor Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sasan Haghighi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Akbari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Shirani M, Talebi S, Sadeghi O, Hassanizadeh S, Askari G, Bagherniya M, Sahebkar A. Effects of marine-derived n-3 PUFA supplementation on soluble adhesion molecules: A systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacol Res 2023; 197:106963. [PMID: 37863453 DOI: 10.1016/j.phrs.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Long-chain n-3 poly unsaturated fatty acids have anti-inflammatory effects but their effects on serum levels of adhesion molecules are inconsistent and contradictory. In this updated systematic review and meta-analysis, marine sources of omega-3 fatty acids were pooled up to determine the effects of omega-3 supplementation on adhesion molecules. PubMed-Medline, SCOPUS, Web of Science and Google Scholar databases (from inception to April 2023) were searched and all RCTs investigating the effects of marine sources of omega-3, on blood concentrations of adhesion molecules were included and a meta-analysis undertaken. Forty-two RCTs were included involving 3555 participants aged from 18 to 75 years. Meta-analysis of 38 arms from 30 RCTs reporting serum concentrations of vascular cell adhesion molecule-1 (VCAM-1) showed a significant reduction after omega-3 supplementation (WMD: -1.26, 95% CI: -1.88 to -0.64 ng/mL, P < 0.001). Meta-analysis of 40 arms from 30 RCTs reporting serum concentrations of intercellular adhesion molecule-1 (ICAM-1) revealed a reduction following omega-3 supplementation, although it was not significant (WMD: -1.76, 95%CI: -3.68 to 0.16 ng/mL, P = 0.07). Meta-analysis of 27 arms from 21 trials showed no effect on E-selectin (WMD: 0.01, 95%CI: -0.02 to 0.04 ng/mL, P = 0.62). Pooling 15 arms from 11 RCTs showed a marginally significant reducing effect on P-selectin concentrations (WMD: -2.67, 95%CI: -5.53 to 0.19 ng/mL, P = 0.06). A considerable decrease in VCAM concentration was observed after omega-3 supplementation in this meta-analysis with a trend to decreases in both ICAM and P-selectin levels, with effects that may be significant depending on study design, and there was no effect on E-selectin.
Collapse
Affiliation(s)
- Mahsa Shirani
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shokoofeh Talebi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Gao J, Xie C, Yang J, Tian C, Zhang M, Lu Z, Meng X, Cai J, Guo X, Gao T. The Effects of n-3 PUFA Supplementation on Bone Metabolism Markers and Body Bone Mineral Density in Adults: A Systematic Review and Meta-Analysis of RCTs. Nutrients 2023; 15:2806. [PMID: 37375709 DOI: 10.3390/nu15122806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Supplemental n-3 polyunsaturated fatty acids (PUFA) on bone metabolism have yielded inconsistent results. This study aimed to examine the effects of n-3 PUFA supplementation on bone metabolism markers and bone mineral density through a meta-analysis of randomized controlled trials. A systematic literature search was conducted using the PubMed, Web of Science, and EBSCO databases, updated to 1 March 2023. The intervention effects were measured as standard mean differences (SMD) and mean differences (MD). Additionally, n-3 PUFA with the untreated control, placebo control, or lower-dose n-3 PUFA supplements were compared, respectively. Further, 19 randomized controlled trials (RCTs) (22 comparisons, n = 2546) showed that n-3 PUFA supplementation significantly increased blood n-3 PUFA (SMD: 2.612; 95% CI: 1.649 to 3.575). However, no significant effects were found on BMD, CTx-1, NTx-1, BAP, serum calcium, 25(OH)D, PTH, CRP, and IL-6. Subgroup analyses showed significant increases in femoral neck BMD in females (0.01, 95% CI: 0.01 to 0.02), people aged <60 years (0.01, 95% CI: 0.01 to 0.01), and those people in Eastern countries (0.02, 95% CI: 0.02 to 0.03), and for 25(OH)D in people aged ≥60 years (0.43, 95% CI: 0.11 to 0.74), treated with n-3 PUFA only (0.36, 95% CI: 0.06 to 0.66), and in studies lasting ≤6 months (0.29, 95% CI: 0.11 to 0.47). NTx-1 decreased in both genders (-9.66, 95% CI: -15.60 to -3.71), and serum calcium reduction was found in studies lasting >6 months (-0.19, 95% CI: -0.37 to -0.01). The present study demonstrated that n-3 PUFA supplementation might not have a significant effect on bone mineral density or bone metabolism markers, but have some potential benefits for younger postmenopausal subjects in the short term. Therefore, additional high-quality, long-term randomized controlled trials (RCTs) are warranted to fully elucidate the potential benefits of n-3 PUFA supplementation, as well as the combined supplementation of n-3 PUFA, on bone health.
Collapse
Affiliation(s)
- Jie Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Chenqi Xie
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Jie Yang
- Health Service Center of Xuejiadao Community, Qingdao 266520, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Mai Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhenquan Lu
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiangyuan Meng
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Xiaofei Guo
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
8
|
Sergeeva E, Ruksha T, Fefelova Y. Effects of Obesity and Calorie Restriction on Cancer Development. Int J Mol Sci 2023; 24:ijms24119601. [PMID: 37298551 DOI: 10.3390/ijms24119601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The risk of malignant tumor development is increasing in the world. Obesity is an established risk factor for various malignancies. There are many metabolic alterations associated with obesity which promote cancerogenesis. Excessive body weight leads to increased levels of estrogens, chronic inflammation and hypoxia, which can play an important role in the development of malignancies. It is proved that calorie restriction can improve the state of patients with various diseases. Decreased calorie uptake influences lipid, carbohydrate and protein metabolism, hormone levels and cell processes. Many investigations have been devoted to the effects of calorie restriction on cancer development in vitro and in vivo. It was revealed that fasting can regulate the activity of the signal cascades including AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), p53, mTOR, insulin/ insulin-like growth factor 1 (IGF1) and JAK-STAT. Up- or down-regulation of the pathways results in the decrease of cancer cell proliferation, migration and survival and the increase of apoptosis and effects of chemotherapy. The aim of this review is to discuss the connection between obesity and cancer development and the mechanisms of calorie restriction influence on cancerogenesis that stress the importance of further research of calorie restriction effects for the inclusion of this approach in clinical practice.
Collapse
Affiliation(s)
- Ekaterina Sergeeva
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Yulia Fefelova
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| |
Collapse
|
9
|
Yu D, Chen W, Zhang J, Wei L, Qin J, Lei M, Tang H, Wang Y, Xue S, Dong J, Chen Y, Xie L, Di H. Effects of weight loss on bone turnover, inflammatory cytokines, and adipokines in Chinese overweight and obese adults. J Endocrinol Invest 2022; 45:1757-1767. [PMID: 35635643 PMCID: PMC9360139 DOI: 10.1007/s40618-022-01815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Plenty of studies have examined the long term effect of weight loss on bone mineral density. This study aimed to explore the effects of 10% weight loss on early changes in bone metabolism as well as the possible influencing factors. METHODS Overweight and obese outpatients (BMI > 24.0 kg/m2) were recruited from the nutrition clinic and followed a calorie-restricted, high-protein, low-carbohydrate diet program. Dietary intake, body composition, serum procollagen type I N-propeptide (PINP), β-Crosslaps, PTH, 25(OH) VitD, a series of inflammatory cytokines and adipokines were measured for the participants before starting to lose weight and after 10% weight loss (NCT04207879). RESULTS A total of 75 participants were enrolled and 37 participants achieved a weight loss of at least 10%. It was found that PINP decreased (p = 0.000) and the β-Crosslaps increased (p = 0.035) in female participants. Decreases in PTH (p = 0.001), serum IL-2 (p = 0.013), leptin (p = 0.001) and increases in 25(OH) VitD (p = 0.001), serum ghrelin (p = 0.033) were found in 37 participants after 10% of their weight had been lost. Change in PINP was detected to be significantly associated with change in lean body mass (r = 0.418, p = 0.012) and change in serum ghrelin(r = - 0.374, p = 0.023). CONCLUSIONS Bone formation was suppressed and bone absorption was increased in female subjects after a 10% weight loss. Bone turnover was found to be associated with lean body mass and affected by the circulating ghrelin level.
Collapse
Affiliation(s)
- D Yu
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - W Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - J Zhang
- Clinical Biochemistry Lab, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - L Wei
- Department of Nuclear Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - J Qin
- The Biobank, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - M Lei
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - H Tang
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y Wang
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - S Xue
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - J Dong
- Joint Department, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y Chen
- The Graduate School, Hebei Medical University, Shijiazhuang, China
| | - L Xie
- School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China.
| | - H Di
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Goralska J, Razny U, Calder PC, Gruca A, Childs CE, Zabielski P, Dembinska-Kiec A, Banach M, Solnica B, Malczewska-Malec M. Glucose-Dependent Insulinotropic Polypeptide Plasma Level Influences the Effect of n-3 PUFA Supplementation. Diagnostics (Basel) 2022; 12:diagnostics12081984. [PMID: 36010335 PMCID: PMC9406980 DOI: 10.3390/diagnostics12081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Elevated glucose-dependent insulinotropic peptide (GIP) levels in obesity may predict the metabolic benefits of n-3 PUFA supplementation. This placebo-controlled trial aimed to analyze fasting and postprandial GIP response to 3-month n-3 PUFA supplementation (1.8 g/d; DHA:EPA, 5:1) along with caloric restriction (1200–1500 kcal/d) in obese subjects. Compliance was confirmed by the incorporation of DHA and EPA into red blood cells (RBCs). Blood analyses of glucose, insulin, non-esterified fatty acids (NEFAs), GIP and triglycerides were performed at fasting, and during an oral glucose tolerance test and a high fat mixed-meal tolerance test. Fatty acid composition of RBC was assessed by gas chromatography and total plasma fatty acid content and composition was measured by gas–liquid chromatography. The DHA and EPA content in RBCs significantly increased due to n-3 PUFA supplementation vs. placebo (77% vs. −3%, respectively). N-3 PUFA supplementation improved glucose tolerance and decreased circulating NEFA levels (0.750 vs. 0.615 mmol/L), as well as decreasing plasma saturated (1390 vs. 1001 µg/mL) and monounsaturated (1135 vs. 790 µg/mL) fatty acids in patients with relatively high GIP levels. The effects of n-3 PUFAs were associated with the normalization of fasting (47 vs. 36 pg/mL) and postprandial GIP levels. Obese patients with elevated endogenous GIP could be a target group for n-3 PUFA supplementation in order to achieve effects that obese patients without GIP disturbances can achieve with only caloric restriction.
Collapse
Affiliation(s)
- Joanna Goralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
- Correspondence:
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Caroline E. Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Mickiewicza Street, 15-222 Bialystok, Poland
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Malgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| |
Collapse
|