1
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
2
|
Ma H, Mueed A, Liu D, Ali A, Wang T, Ibrahim M, Su L, Wang Q. Polysaccharides of Floccularia luteovirens regulate intestinal immune response, and oxidative stress activity through MAPK/Nrf2/Keap1 signaling pathway in immunosuppressive mice. Int J Biol Macromol 2024; 277:134140. [PMID: 39074695 DOI: 10.1016/j.ijbiomac.2024.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
This study explores the novel immunomodulatory effects of polysaccharides from the rare Floccularia luteovirens, a fungus with significant potential yet unexplored bioactive components, traditionally used in Tibetan medicine. This study employs a wide array of analytical techniques, including HPGPC, HPLC, western blotting, ELISA, and 16S rRNA gene sequencing, to comprehensively investigate FLP1's effects. The main structure of FLP1 was characterized by IF-TR and NMR spectrometry. The structural backbone of FLP1 was →3,6)-β-D-Glcp-(1 → and →2,3)-α-D-Manp-(1→. After immunosuppressed mice treated with FLP1, the findings demonstrated that FLP1 stimulated the production of secretory sIgA and secretion of cytokines (IL-4, TNF-α, and IFN-γ) in the intestine of Cy-treated mice, resulting in the activation of the MAPK pathway. Additionally, FLP1 protected oxidative stress by triggering Nrf2/Keap1 pathways and antioxidation enzymes (SOD, MDA, T-AOC, CAT, and GSH-Px). It also enhanced the intestinal barrier function by regulating the villous height ratio and expression of tight-junction protein. Furthermore, FLP1 remarkably reversed the gut microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Oscilliospiraceae, and Lachnospiraceae, and altered the fecal metabolites by increasing LysoPE (0:0/18:0); 0:0/16:0; 18:1(11Z)/0:0, LysoPG (16:0/0:0), LysoPG 18:1 (2n) PE (14:0/20:1), echinenone, 2-(2-Nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide, and suberic acid which is closely related to the immunity function. These results suggested that FLP1 may regulate the intestinal immune response by modulating the gut microbiota and fecal metabolites in immunosuppressed mice thereby activating the immune system.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Daiyao Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Tianci Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| |
Collapse
|
3
|
Senanayake T, Makanyengo S, Hoedt EC, Goggins B, Smith SR, Keely S. Influence of the bile acid/microbiota axis in ileal surgery: a systematic review. Colorectal Dis 2024; 26:243-257. [PMID: 38177086 DOI: 10.1111/codi.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
AIM The gastrointestinal bile acid (BA)/microbiota axis has emerged as a potential mediator of health and disease, particularly in relation to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer. Whilst it presents an exciting new avenue for therapies, it has not yet been characterized in surgical resection of the ileum, where BA reabsorption occurs. The identification of BA/microbiota signatures may provide future therapies with perioperative personalized medicine. In this work we conduct a systematic review with the aim of investigating the microbiome and BA changes that are associated with resection of the ileum. METHOD The databases included were MEDLINE, EMBASE, Web of Science and Cochrane libraries. The outcomes of interest were faecal microbiome and BA signatures after ileal resection. RESULTS Of the initial 3106 articles, three studies met the inclusion/exclusion criteria for data extraction. A total of 257 patients (46% surgery, 54% nonsurgery controls) were included in the three studies. Two studies included patients with short bowel syndrome and the other included patients with IBD. Large-scale microbiota changes were reported. In general, alpha diversity had decreased amongst patients with ileal surgery. Phylum-level changes included decreased Bacteroidetes and increased Proteobacteria and Fusobacteria in patients with an intestinal resection. Surgery was associated with increased total faecal BAs, cholic acid and chenodeoxycholic acid. There were decreases in deoxycholic acid and glycine and taurine conjugated bile salts. Integrated BA and microbiota data identified correlations with several bacterial families and BA. CONCLUSION The BA/microbiota axis is still a novel area with minimal observational data in surgery. Further mechanistic research is necessary to further explore this and identify its role in improving perioperative outcomes.
Collapse
Affiliation(s)
- Tharindu Senanayake
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- Surgical and Perioperative Care Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Samwel Makanyengo
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- Surgical and Perioperative Care Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Emily C Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Bridie Goggins
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Stephen R Smith
- Surgical and Perioperative Care Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
4
|
Son SJ, Han AR, Sung MJ, Hong SM, Lee SH. Hermetia illucens Fermented with Lactobacillus plantarum KCCM12757P Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants (Basel) 2023; 12:1822. [PMID: 37891901 PMCID: PMC10604763 DOI: 10.3390/antiox12101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) can severely affect humans and animals and is difficult to treat. Black soldier fly (Hermetia illucens; Hi) larvae (BSFL) are a sustainable source of protein. However, no studies exist on the antioxidant and anti-inflammatory functions of BSFL or fermented BSFL with respect to IBD. In this study, riboflavin-producing Lactobacillus plantarum KCCM12757P was isolated from a fish farm tank, and in conjunction with hot water-extracted Hi (HeHi) (termed HeHi_Lp), was used to determine optimal fermentation conditions to increase vitamin B2 concentration. This in vivo study investigated the therapeutic effects and mechanistic role of HeHi_Lp in chronic colitis-induced murine models. Histological changes, inflammatory cytokine levels, and intestinal barrier function were explored. Gut microbial communities and gene expression in the nuclear factor (NF)-κB signaling pathway were also studied. HeHi_Lp remarkably reduced the disease activity index, inflammatory cytokine (inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, interleukin (IL-6 and IL-1β) levels, and increased body weight and colon length. HeHi_Lp administration significantly raised zonula occludens 1, occludin and claudin 1 and improved the composition of the gut microbiota and beneficial intestinal bacteria. These results suggest that HeHi_Lp can be used as a dietary supplement in pet food to alleviate colitis.
Collapse
Affiliation(s)
- Seok Jun Son
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Ah-Ram Han
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Mi Jeong Sung
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Sun Mee Hong
- Department of Technology Development, Marine Industry Research Institute for East Sea Rim, Jukbyeon, Uljin-gun 36315, Gyeongsangbuk-do, Republic of Korea;
| | - Sang-Hee Lee
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| |
Collapse
|
5
|
Wei B, Ren P, Yang R, Gao Y, Tang Q, Xue C, Wang Y. Ameliorative Effect of Mannuronate Oligosaccharides on Hyperuricemic Mice via Promoting Uric Acid Excretion and Modulating Gut Microbiota. Nutrients 2023; 15:nu15020417. [PMID: 36678288 PMCID: PMC9865265 DOI: 10.3390/nu15020417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mannuronate oligosaccharide (MOS) is α-D-mannuronic acid polymer with 1,4-glycosidic linkages that possesses beneficial biological properties. The aim of this study was to investigate the hypouricemic effect of MOS in hyperuricemic mice and demonstrate the possible protective mechanisms involved. In this research, 200 mg/kg/day of MOS was orally administered to hyperuricemic mice for four weeks. The results showed that the MOS treatment significantly reduced the serum uric acid (SUA) level from 176.4 ± 7.9 μmol/L to 135.7 ± 10.9 μmol/L (p < 0.05). MOS alleviated the inflammatory response in the kidney. Moreover, MOS promoted uric acid excretion by regulating the protein levels of renal GLUT9, URAT1 and intestinal GLUT9, ABCG2. MOS modulated the gut microbiota in hyperuricemic mice and decreased the levels of Tyzzerella. In addition, research using antibiotic-induced pseudo-sterile mice demonstrated that the gut microbiota played a crucial role in reducing elevated serum uric acid of MOS in mice. In conclusion, MOS may be a potential candidate for alleviating HUA symptoms and regulating gut microbiota.
Collapse
Affiliation(s)
- Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruzhen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Correspondence: ; Tel.: +86-186-6140-2667
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
6
|
Sun P, Zhang C, Huang Y, Yang J, Zhou F, Zeng J, Lin Y. Jiangu granule ameliorated OVX rats bone loss by modulating gut microbiota-SCFAs-Treg/Th17 axis. Biomed Pharmacother 2022; 150:112975. [PMID: 35453007 DOI: 10.1016/j.biopha.2022.112975] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a common disease that has decreased bone strength as its main symptom after menopause. Effective treatment for PMOP remains lacking, but traditional Chinese medicine has some advantages in delaying bone loss. Jiangu granule is a traditional Chinese medicine prescription commonly used to treat PMOP. Previous studies have demonstrated its efficacy, but the mechanism of action remains uncharacterized. PURPOSE This study aims to observe and discuss the mechanism of Jiangu granule to ameliorate bone loss in OVX rats by regulating the gut microbiota (GM)-short-chain fatty acids (SCFAs)- Treg/Th17 axis. METHODS Female SD rats were divided into the sham operation (S), Jiangu granule (J), and model group (M). Bilateral ovaries were surgically removed from the rats in the J and M groups. After 6 and 12 weeks, rats were sacrificed, and femur, tibia, vertebrae, serum, spleen, colon, and feces samples were collected. We detected the strength of bones, gut microbiota structure, and SCFAs in feces, the Treg and Th17 cell levels in the spleen, and cytokine levels in the serum. RESULT Jiangu granule restored the abundance of gut microbiota, increased the content of SCFAs, reduced the permeability of colon epithelium, increased the proportion of Treg cells in the spleen, changed the osteoimmunomodulation-related cytokines, effectively prevented bone loss, and enhanced bone strength. CONCLUSION Jiangu granule can effectively improve bone loss in OVX rats, possibly by regulating the "GM-SCFAs-Treg/Th17″ axis.
Collapse
Affiliation(s)
- Pan Sun
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Longhua Hospital, Institute of Spine, Shanghai University of Traditional Chinese Medicine, Key Laboratory, Ministry of Education of China, Shanghai 200032, China
| | - Chutian Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Juan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Fen Zhou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanping Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|