1
|
Vithalkar MP, Sandra KS, Bharath HB, Krishnaprasad B, Fayaz SM, Sathyanarayana B, Nayak Y. Network Pharmacology-driven therapeutic interventions for Interstitial Lung Diseases using Traditional medicines: A Narrative Review. Int Immunopharmacol 2025; 147:113979. [PMID: 39746273 DOI: 10.1016/j.intimp.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
This review explores the progressive domain of network pharmacology and its potential to revolutionize therapeutic approaches for Interstitial Lung Diseases (ILDs), a collective term encompassing Interstitial Pneumonia, Pneumoconiosis, Connective Tissue Disease-related ILDs, and Sarcoidosis. The exploration focuses on the profound legacy of traditional medicines, particularly Ayurveda and Traditional Chinese Medicines (TCM), and their largely unexplored capacity in ILD treatment. These ancient healing systems, characterized by their holistic methodologies and multifaceted treatment modalities, offer a promising foundation for discovering innovative therapeutic strategies. Moreover, the review underscores the amalgamation of artificial intelligence (AI) and machine learning (ML) methodologies with bioinformatics, creating a computational synergy capable of deciphering the intricate biological networks associated with ILDs. Network pharmacology has tailored the hypothesis from the conventional "one target, one drug" towards a "network target, multi-component therapeutics" approach. The fusion of traditional literature and computational technology can unveil novel drugs, targets, and pathways, augmenting effective therapies and diminishing adverse effects related to current medications. In conclusion, this review provides a comprehensive exposition of how Network Pharmacology tools can leverage the insights of Ayurveda and TCM to craft efficacious therapeutic solutions for ILDs. It sets the stage for future investigations in this captivating interdisciplinary domain, validating the use of traditional medicines worldwide.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - B Krishnaprasad
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - B Sathyanarayana
- Muniyal Institute of Ayurveda Medical Sciences, Manipal, Karnataka 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Hu JQ, Wang CC, Ma RX, Qi SQ, Fu W, Zhong J, Cao C, Zhang XL, Liu GH, Gao YD. Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model. Int Immunopharmacol 2024; 146:113921. [PMID: 39732106 DOI: 10.1016/j.intimp.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects. Due to their hydrophobicity, MPs can act as a carrier for other pollutants, pathogens, and allergens. This carrier effect of MPs may adsorb allergens and thus make the body exposed to MPs and a large number of allergens simultaneously. We hypothesized that co-exposure to inhaled MPs and aeroallergens may promote the development of airway inflammation of asthma by disrupting the airway epithelial barrier. METHODS The effects of co-exposure to Polyethylene microplastics (PE-MPs) and allergens on allergic airway inflammation and airway epithelial barrier were examined in a mouse model of asthma. The mice were divided into four groups: (i) Control group, treated only with PBS; (ii) MP group, exposed to PE-MPs and PBS; (iii) HDM group, mice were sensitized and challenged with HDM, and intranasally treated with PBS; (iv) HDM + MP group, mice were sensitized and challenged with HDM, and intranasally treated with PE-MPs. Histology and ELISA assays were used to evaluate the severity of airway inflammation. FITC-dextran permeability assay, immunofluorescence assay, and RT-PCR were used to evaluate the airway epithelial barrier function and the expression of relevant molecules. Transcriptomics analysis with lung tissue sequencing was conducted to identify possible pathways responsible for the effects of PE-MPs. RESULTS Co-exposure of mice to PE-MPs and HDM induced a higher degree of inflammatory cell infiltration, bronchial goblet cell hyperplasia, collagen deposition, allergen sensitization, and Th2 immune bias than exposure to HDM alone. Co-exposure to PE-MPs and HDM aggravated oxidative stress injury in the lung and the production of cytokine IL-33 in the BALF. In addition, co-exposure of mice to PE-MPs and HDM resulted in a more pronounced decrease in the expression of relevant molecules of the airway epithelial barrier and more significant increase in the permeability of airway epithelia. Lung tissue transcriptomics analysis revealed that PE-MPs exposure was associated with CXCL1 signaling and neutrophil activation. CONCLUSION Co-exposure to MPs and HDM may promote airway inflammation and airway epithelial barrier disruption and induce immune responses characterized by CXCL1 signaling and neutrophilic inflammation.
Collapse
Affiliation(s)
- Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chang-Chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ru-Xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shi-Quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Liu Y, Wang C, Li M, Zhu Y, Liu K, Liu Y, Luo M, Zhang C. Natural ingredients in the regulation of abnormal lipid peroxidation: a potential therapy for pulmonary diseases. Front Pharmacol 2024; 15:1507194. [PMID: 39759448 PMCID: PMC11695318 DOI: 10.3389/fphar.2024.1507194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task. Lipid peroxidation is caused by the disruption of redox homeostasis, accumulation of reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the occurrence and progression of respiratory diseases, including acute lung injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, and lung cancer. Natural ingredients have high safety, high availability, and low cost, and can regulate lipid peroxidation through multiple pathways and targets, making them valuable new drugs. This article aims to summarize the pharmacology and mechanism of natural ingredients targeting lipid peroxidation in the treatment of lung diseases. The reviewed data indicate that natural ingredients are a promising anti-lipid peroxidation drug, mainly alleviating lipid peroxidation through the cystine/glutamate antiporter (System Xc -)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be necessary to further study the mechanisms of natural products in treating pulmonary diseases through lipid peroxidation and conduct multi-center, large-sample clinical trials to promote the development of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Chahal SK, Kabra A. Fisetin ameliorates polycystic ovary syndrome in rats via a mechanistic modulation of AMP-activated protein kinase and SIRT1 molecular pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10017-10029. [PMID: 38963551 DOI: 10.1007/s00210-024-03257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Fisetin, a polyphenolic flavonoid, exhibits numerous pharmacological activities against metabolic syndromes. The present research aims to explore the therapeutic efficacy of fisetin in experimental polycystic ovary syndrome (PCOS). Female Sprague-Dawley rats were administered mifepristone (20 mg/kg/day) to induce PCOS. PCOS rats were treated with fisetin (20 mg/kg and 40 mg/kg) and further compared with metformin HCl, the conventional drug for PCOS. The mechanism of fisetin was explored using dorsomorphin (an AMPK inhibitor). Then, rats were sacrificed for further analysis of biochemical and histological parameters. PCOS rats exhibited irregular estrous cycles, increased serum testosterone (4.72 ± 0.139 ng/ml), estradiol (750.2 ± 16.56 pg/ml), LH (30.33 ± 1.563 mIU/ml), HOMA-IR (1.115 ± 0.049), TNF-α (86.59 ± 3.93 pg/ml), IL-6 (55.34 ± 4.432 pg/ml), and TBARS (3.867 ± 0.193 µmol/mg) along with declined progesterone (11.67 ± 1.54 ng/ml), FSH (13.33 ± 1.256 mIU/ml), GSH (33.47 ± 1.348 µmol/mg) levels, and SOD (2.163 ± 0.298 U/mg) activity as compared to normal control group. Fisetin high dose significantly lowers testosterone (3.014 ± 0.234 ng/ml), estradiol (533.7 ± 15.39 pg/ml), LH (16.67 ± 1.62 mIU/ml), HOMA-IR (0.339 ± 0.20), TNF-α (46.02 ± 2.66 pg/ml), IL-6 (31.77 ± 3.47 pg/ml), and TBARS (1.747 ± 0.185 µmol/mg) and enhances progesterone (33.17 ± 1.447 ng/ml), FSH (27.17 ± 1.42 mIU/ml), GSH (60.35 ± 1.1.102 µmol/mg) levels, and SOD (4.513 ± 0.607 U/mg) activity. The histology of ovarian tissues shows a significant increase in cystic follicles in PCOS rats compared with the normal control group. These alterations were attenuated with fisetin treatment. Administration of dorsomorphin with fisetin can reverse the beneficial effects of fisetin in PCOS rats. Altogether, these present findings highlight the potential of fisetin as a promising therapeutic intervention for the management of PCOS by modulating AMPK/SIRT1 signaling in rats.
Collapse
Affiliation(s)
- Simerjeet Kaur Chahal
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
5
|
Sattari M, Amri J, Shahaboddin ME, Sattari M, Tabatabaei-Malazy O, Azmon M, Meshkani R, Panahi G. The protective effects of fisetin in metabolic disorders: a focus on oxidative stress and associated events. J Diabetes Metab Disord 2024; 23:1753-1771. [PMID: 39610486 PMCID: PMC11599505 DOI: 10.1007/s40200-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 11/30/2024]
Abstract
Abstract Metabolic syndrome is increasingly recognized as a significant precursor to various chronic diseases, contributing to a growing public health concern. Its complex pathogenesis involves multiple interrelated mechanisms, with oxidative stress identified as a cornerstone that exacerbates other pathogenic pathways. This study elucidates the molecular mechanisms by which oxidative stress intensifies metabolic disturbances, particularly insulin resistance. Some recent research has focused on fisetin, a natural product known for its potential benefits in diabetes and its associated microvascular and macrovascular complications. This paper compiles a comprehensive collection of findings by reviewing studies conducted over the past decade, detailing dosages, investigated markers, and their respective outcomes. Notably, a recurrent finding was fisetin's ability to enhance Nrf2, a principal regulator of antioxidant defense, in both metabolic and non-metabolic diseases. Furthermore, intriguing results suggest that the effects of Nrf2 extend beyond oxidative stress modulation, demonstrating favorable impacts on tissue-specific functions in metabolic regulation. This highlights fisetin not only as an antioxidant but also as a potential therapeutic agent for improving metabolic health and mitigating the effects of metabolic syndrome. In conclusion, fisetin can enhance the body's antioxidant defenses by modulating the Nrf2 pathway while also improving metabolic health through its effects on inflammation, cell survival, and energy metabolism, offering a comprehensive approach to managing metabolic disorders. Graphical Abstract
Collapse
Affiliation(s)
- Mahboobe Sattari
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Mohammad Esmaeil Shahaboddin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohadese Sattari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Xie Q, Gong S, Cao J, Li A, Kulyar MF, Wang B, Li J. Mesenchymal stem cells: a novel therapeutic approach for feline inflammatory bowel disease. Stem Cell Res Ther 2024; 15:409. [PMID: 39522034 PMCID: PMC11550560 DOI: 10.1186/s13287-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) poses a significant and growing global health challenge, affecting both humans and domestic cats. Research on feline IBD has not kept pace with its widespread prevalence in human populations. This study aimed to develop a model of feline IBD by incorporating dextran sulfate sodium (DSS) to evaluate the therapeutic potential of MSCs and to elucidate the mechanisms that enhance their action. METHODS We conducted a comprehensive clinical assessment, including magnetic resonance imaging (MRI), endoscopy, and histopathological examination. Additionally, alterations in intestinal microbiota were characterized by 16 S rDNA sequencing, and the influence of MSCs on IBD-related gene expression was investigated through transcriptome analysis. RESULTS According to our findings, MSC treatment significantly mitigated DSS-induced clinical manifestations, reduced inflammatory cell infiltration, decreased the production of inflammatory mediators, and promoted mucosal repair. Regarding the intestinal microbiota, MSC intervention effectively corrected the DSS-induced dysbiosis, increasing the presence of beneficial bacteria and suppressing the proliferation of harmful bacteria. Transcriptome analysis revealed the ability of MSCs to modulate various inflammatory and immune-related signaling pathways, including cytokine-cytokine receptor interactions, TLR signaling pathways, and NF-κB pathways. CONCLUSION The collective findings indicate that MSCs exert multifaceted therapeutic effects on IBD, including the regulation of intestinal microbiota balance, suppression of inflammatory responses, enhancement of intestinal barrier repair, and modulation of immune responses. These insights provide a solid scientific foundation for employing MSCs as an innovative therapeutic strategy for IBD and pave the way for future clinical explorations.
Collapse
Affiliation(s)
- Qiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
7
|
da Silva HC, das Chagas Lima Pinto F, Silva Marinho E, Alencar de Menezes JES, Kueirislene Amâncio Ferreira M, da Silva AW, Machado Marinho E, Marinho MM, Pessoa Bezerra de Menezes RRP, Washington Cavalcante J, Silva Dos Santos H, Pessoa ODL, Santiago GMP. Anxiolytic and Anticonvulsant Effects of Fisetin Isolated from Bauhinia pentandra on Adult Zebrafish (Danio rerio). Chem Biodivers 2024; 21:e202401207. [PMID: 39088251 DOI: 10.1002/cbdv.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
Anxiety and epilepsy are common worldwide and represent a primary global health concern. Fisetin, a flavonoid isolated from Bauhinia pentandra, has a wide range of biological activities may be a promising alternative to combat diseases related to the central nervous system (CNS). The present study aimed to investigate the anxiolytic and anticonvulsant effects of fisetin on adult zebrafish. Furthermore, molecular docking simulations were performed to improve the results. Fisetin did not present toxicity and caused anxiolytic behavior and delayed seizures in animals. This effect may occur through serotonin neurotransmission at 5-HT3A and/or 5-HT3B receptors. Molecular docking simulations showed that fisetin interacts with the orthosteric site of the 5-HT3A receptor with strong H-bond interactions with the Trp156 residue, with a strong contribution from the catechol ring, a behavior similar to that of the antagonist co-crystallized inhibitor granisetron (CWB). Fisetin may be a promising alternative to combat diseases related to the central nervous system.
Collapse
Affiliation(s)
- Horlando Carlota da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, CE, Brazil
| | | | | | - Antonio Wlisses da Silva
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, CE, Brazil
| | - Emanuelle Machado Marinho
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, CE, Brazil
| | | | - John Washington Cavalcante
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Ceará, Rua Pastor Samuel Munguba 1210, Campus do Porangabussu, 60430-370, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, CE, Brazil
| | | | - Gilvandete Maria Pinheiro Santiago
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
- Departamento de Farmácia, Universidade Federal do Ceará, Rua Pastor Samuel Munguba 1210, Campus do Porangabussu, 60430-370, Fortaleza, CE, Brazil
| |
Collapse
|
8
|
Liu Y, Yin Q, Liu B, Lu Z, Liu M, Meng L, He C, Chang J. Fisetin reduces ovalbumin-triggered airway remodeling by preventing phenotypic switching of airway smooth muscle cells. Respir Res 2024; 25:370. [PMID: 39402516 PMCID: PMC11479573 DOI: 10.1186/s12931-024-03005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway remodeling and ASMCs phenotype transition has not been investigated. OBJECTIVES This research seeked to assess the impact of fisetin on ovalbumin (OVA) induced asthmatic airway remodeling and ASMCs phenotype transition, and clarify the mechanisms through network pharmacology predictions as well as in vivo and in vitro validation. METHODS First, a fisetin-asthma-ASMCs network was constructed to identify potential targets. Subsequently, cellular and animal studies were carried out to examine the inhibitory effects of fisetin on airway remodeling in asthmatic mice, and to detemine how fisetin impacts the phenotypic transition of ASMCs. RESULTS Network analysis indicated that fisetin might affect asthma via mediating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) pathway. Intraperitoneal administration of fisetin in vivo reduced airway inflammation and remodeling, as shown by reduced inflammatory cells, decreased T helper type 2 (Th2) cytokine release, diminished collagen accumulation, mitigated airway smooth muscle thickening, and decreased expression of osteopontin (OPN), collagen-I and α-smooth muscle actin (α-SMA). Moreover, fisetin suppressed the PI3K/AKT pathway in asthmatic lung tissue. According to the in vitro data, fisetin downregulated the expression of the synthetic phenotypic proteins OPN and collagen-I, contractile protein α-SMA, and inhibited cellular migration, potentially through the PI3K/AKT pathway. CONCLUSION These results suggest that fisetin inhibits airway remodeling in asthma by regulating ASMCs phenotypic shift, emphasizing that fisetin is a promising candidate for the treatment of airway smooth muscle remodeling.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Qiling Yin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Bin Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Zheng Lu
- Tai'an Tumour Prevention and Treatment Hospital, Tai'an, Shandong, 271000, China
| | - Meijun Liu
- Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Ling Meng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| | - Chao He
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, 271000, China.
| | - Jin Chang
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| |
Collapse
|
9
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
10
|
Wang X, Li X, Zhou J, Lei Z, Yang X. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. Chem Biol Interact 2024; 390:110890. [PMID: 38278314 DOI: 10.1016/j.cbi.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is the most common type of arthritis and is an age-related joint disease that is particularly prevalent in subjects over 65 years old. The chronic rise of senescent cells has a close correlation with age-related diseases such as OA, and the senescence-associated secretory phenotype (SASP) is implicated in OA cartilage degeneration pathogenesis. Sirtuin 6 (SIRT6) is likely to be a key senescence-related regulator. Fisetin (FST) is a natural flavonol of the flavonoid family that is recommended as a senolytic drug to extend health and lifespan. However, the potential chondroprotective effects of FST on OA rats are largely unclarified. The aim of this study is to investigate the ameliorative effects of FST on OA joint cartilage and the relationship with SIRT6 and the detailed mechanisms from anti-inflammatory and anti-senescent perspectives. Rats were subjected to destabilization of the medial meniscus (DMM) surgery as a means of inducing the experimental OA model in vivo. Chondrocytes treated with IL-1β were utilized for mimicking the OA cell model in vitro. Intra-articular injection of FST, OSS_128,167 (OSS, SIRT6 inhibitor), and MDL800 (MDL, SIRT6 agonist) in vivo or administering them in IL-1β-induced rat chondrocytes in vitro were performed in order to determine the effects FST has on OA and the link with SIRT6. This study found SIRT6 level to be negatively correlated with OA severity. SIRT6 downregulation was validated in the joint cartilages of DMM rats and IL-1β-treated chondrocytes. It was also notably demonstrated that FST can activate SIRT6. Both the administration of FST and activation of SIRT6 using MDL were found to rescue cartilage erosion, decrease extracellular matrix (ECM) degradation, prevent cartilage from apoptosis, and improve detrimental senescence-related phenotype. The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1β-stimulated chondrocytes were also confirmed. SIRT6 loss occurs in articular cartilage in OA pathogenesis, which is linked to aging. FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zheng Lei
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Ling J, Zhang L, Wang Y, Chang A, Huang Y, Zhao H, Zhuo X. Fisetin, a dietary flavonoid, increases the sensitivity of chemoresistant head and neck carcinoma cells to cisplatin possibly through HSP90AA1/IL-17 pathway. Phytother Res 2023; 37:1997-2011. [PMID: 36631292 DOI: 10.1002/ptr.7723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023]
Abstract
Cisplatin (DDP) resistance is a bottleneck in the treatment of head and neck cancer (HNC), leading to poor prognosis. Fisetin, a dietary flavonoid, has low toxicity and high antitumor activity with unclear mechanisms. We intended to predict the targets of fisetin for reversing DDP-resistance and further verify their expressions and roles. A network pharmacology approach was applied to explore the target genes. The hub genes were screened out and subjected to molecular docking and experimental verification (in vivo and in vitro). Thirty-two genes common to fisetin and DDP-resistance were screened, including three hub genes, namely HSP90AA1, PPIA, and PTPRS. Molecular docking suggested that fisetin and the candidate proteins could bind tightly. HSP90AA1 was identified as the key gene. Administration of fisetin increased the sensitivity of chemoresistant cells (Cal27/DDP and FaDu/DDP) to DDP, accompanied by the downregulation of HSP90AA1 and IL-17. HSP90AA1 silencing increases the sensitivity of DDP-resistant cells to DDP, which was mediated by IL-17. In summary, fisetin might inhibit the chemoresistance of HNC cells to DDP by targeting the HSP90AA1/IL-17 pathway. Several hub genes might be the targets of fisetin for reversing DDP-resistance in HNC cells and might also serve as prognostic factors and therapeutic targets for HNC.
Collapse
Affiliation(s)
- Junjun Ling
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liang Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan Wang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Huang
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Houyu Zhao
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
13
|
Huang WC, Wu SJ, Yeh KW, Liou CJ. Gypenoside A from Gynostemma pentaphyllum Attenuates Airway Inflammation and Th2 Cell Activities in a Murine Asthma Model. Int J Mol Sci 2022; 23:ijms23147699. [PMID: 35887041 PMCID: PMC9315554 DOI: 10.3390/ijms23147699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Our previous study found that oral administration of Gynostemma pentaphyllum extract can attenuate airway hyperresponsiveness (AHR) and reduce eosinophil infiltration in the lungs of asthmatic mice. Gypenoside A is isolated from G. pentaphyllum. In this study, we investigated whether gypenoside A can effectively reduce asthma in mice. Asthma was induced in BALB/c mice by ovalbumin injection. Asthmatic mice were treated with gypenoside A via intraperitoneal injection to assess airway inflammation, AHR, and immunomodulatory effects. In vitro, gypenoside A reduced inflammatory and oxidative responses in inflammatory tracheal epithelial cells. Experimental results showed that gypenoside A treatment can suppress eosinophil infiltration in the lungs, reduce tracheal goblet cell hyperplasia, and attenuate AHR. Gypenoside A significantly reduced Th2 cytokine expression and also inhibited the expression of inflammatory genes and proteins in the lung and bronchoalveolar lavage fluid. In addition, gypenoside A also significantly inhibited the secretion of inflammatory cytokines and chemokines and reduced oxidative expression in inflammatory tracheal epithelial cells. The experimental results suggested that gypenoside A is a natural compound that can effectively reduce airway inflammation and AHR in asthma, mainly by reducing Th2 cell activation.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan;
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan;
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan;
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan
- Correspondence: ; Tel.: +886-3-2118999 (ext. 5607)
| |
Collapse
|
14
|
Wang MC, Huang WC, Chen LC, Yeh KW, Lin CF, Liou CJ. Sophoraflavanone G from Sophora flavescens Ameliorates Allergic Airway Inflammation by Suppressing Th2 Response and Oxidative Stress in a Murine Asthma Model. Int J Mol Sci 2022; 23:ijms23116104. [PMID: 35682783 PMCID: PMC9181790 DOI: 10.3390/ijms23116104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR) and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory response in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms by decreasing airway-inflammation-related oxidative stress.
Collapse
Affiliation(s)
- Meng-Chun Wang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Correspondence: (C.-F.L.); (C.-J.L.); Tel.: +886-3-2118999 (ext. 5707) (C.-F.L.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: (C.-F.L.); (C.-J.L.); Tel.: +886-3-2118999 (ext. 5707) (C.-F.L.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| |
Collapse
|