1
|
Soliz-Rueda JR, López-Fernández-Sobrino R, Torres-Fuentes C, Bravo FI, Suárez M, Mulero M, Muguerza B. Metabolism disturbance by light/dark cycle switching depends on the rat health status: the role of grape seed flavanols. Food Funct 2023; 14:6443-6454. [PMID: 37377055 DOI: 10.1039/d3fo00260h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Changes in light/dark cycles and obesogenic diets are related to the disruption of circadian rhythms and metabolic disorders. Grape seed flavanols have shown beneficial effects on metabolic diseases and, recently, a circadian system modulation has been suggested to mediate their health-enhancing properties. Therefore, the aim of this study was to evaluate the grape seed (poly)phenol extract (GSPE) effects in healthy and obese rats after a light/dark cycle disruption. Forty-eight rats were fed a standard (STD) or cafeteria (CAF) diet for 6 weeks under STD conditions of a light/dark cycle (12 h light per day, L12). Then, animals were switched to a long (18 h light per day, L18) or short (6 h light per day, L6) photoperiod and administered a vehicle (VH) or GSPE (25 mg kg-1) for 1 week. The results showed changes in serum lipids and insulin and metabolomic profiles dependent on the photoperiod and animal health status. GSPE administration improved serum parameters and increased the Nampt gene expression in CAF rats and modified the metabolomic profile in a photoperiod-dependent manner. Metabolic effects of light/dark disturbance depend on the health status of the rats, with diet-induced CAF-induced obese rats being more affected. Grape seed flavanols improve the metabolic status in a photoperiod-dependent manner and their effects on the circadian system suggest that part of their metabolic effects could be mediated by their action on biological rhythms.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Raúl López-Fernández-Sobrino
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
| | - Cristina Torres-Fuentes
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Francisca I Bravo
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Manuel Suárez
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Miquel Mulero
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Begoña Muguerza
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
2
|
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023; 15:457. [PMID: 36678328 PMCID: PMC9864718 DOI: 10.3390/nu15020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Almudena García-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
3
|
Manocchio F, Soliz‐Rueda JR, Ribas‐Latre A, Bravo FI, Arola‐Arnal A, Suarez M, Muguerza B. Grape Seed Proanthocyanidins Modulate the Hepatic Molecular Clock via MicroRNAs. Mol Nutr Food Res 2022; 66:e2200443. [PMID: 36189890 PMCID: PMC10078170 DOI: 10.1002/mnfr.202200443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Circadian rhythm is an endogenous and self-sustained timing system, responsible for the coordination of daily processes in 24-h timescale. It is regulated by an endogenous molecular clock, which is sensitive to external cues as light and food. This study has previously shown that grape seed proanthocyanidins extract (GSPE) regulates the hepatic molecular clock. Moreover, GSPE is known to interact with some microRNAs (miRNAs). Therefore, the aim of this study is to evaluate if the activity of GSPE as modulator of hepatic clock genes can be mediated by miRNAs. METHODS AND RESULTS 250 mg kg-1 of GSPE is administered to Wistar rats before a 6-h jet lag and sacrificed at different time points. GSPE modulated both expression of Bmal1 and miR-27b-3p in the liver. Cosinor-based analysis reveals that both Bmal1 and miR-27b-3p expression follow a circadian rhythm, a negative interaction between them, and the role of GSPE adjusting the hepatic peripheral clock via miRNA. Additionally, in vitro studies show that Bmal1 is sensitive to GSPE (25 mg L-1 ). However, this effect is independent of miR-27b-3p. CONCLUSION miRNA regulation of peripheral clocks via GSPE may be part of a complex mechanism that involves the crosstalk with the central system rather than a direct effect.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Jorge R. Soliz‐Rueda
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Aleix Ribas‐Latre
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
- Present address:
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of LeipzigUniversity Hospital LeipzigD‐04103LeipzigGermany
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| |
Collapse
|
4
|
Morales D. Use of Strawberry Tree ( Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods 2022; 11:foods11233838. [PMID: 36496646 PMCID: PMC9736438 DOI: 10.3390/foods11233838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Arbutus unedo, commonly named 'strawberry tree' (ST), is a Mediterranean native plant that represents a relevant source of biologically active fractions and compounds. ST fruits, traditionally used with culinary and medicinal purposes, along with other components (leaves, roots, honeys, etc.), have been subjected to varied extraction procedures to obtain enriched and bioactive products. This work reviewed the scientific literature, searching for studies that evaluated the potential health implications of ST fractions and attending to the tested biological activities (antioxidant, antiproliferative, hypoglycemic, immune-modulatory, antihypertensive, antimicrobial, etc.), the part of the tree, the experimental model, the specific bioactive compounds and the selected extraction protocol. Furthermore, the strengths and weaknesses of the current state of the published evidence were critically analysed. Although in vitro results demonstrated the potential of ST fractions, further research is encouraged in order to obtain in vivo evidence (animal and clinical studies), assess additional activities (hypocholesterolemic, microbiome-modulatory), maximize the use of advanced extraction technologies, purify and isolate specific bioactive compounds and broaden the analysis investigating phenolic and non-phenolic molecules and their bioavailability.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
5
|
Vandenberghe A, Lefranc M, Furlan A. An Overview of the Circadian Clock in the Frame of Chronotherapy: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14071424. [PMID: 35890319 PMCID: PMC9317821 DOI: 10.3390/pharmaceutics14071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Most living organisms in both the plant and animal kingdoms have evolved processes to stay in tune with the alternation of day and night, and to optimize their physiology as a function of light supply. In mammals, a circadian clock relying on feedback loops between key transcription factors will thus control the temporally regulated pattern of expression of most genes. Modern ways of life have highly altered the synchronization of human activities with their circadian clocks. This review discusses the links between an altered circadian clock and the rise of pathologies. We then sum up the proofs of concept advocating for the integration of circadian clock considerations in chronotherapy for health care, medicine, and pharmacotherapy. Finally, we discuss the current challenges that circadian biology must face and the tools to address them.
Collapse
Affiliation(s)
- Alan Vandenberghe
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France;
| | - Marc Lefranc
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France;
- Correspondence: (M.L.); (A.F.)
| | - Alessandro Furlan
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France;
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Correspondence: (M.L.); (A.F.)
| |
Collapse
|
6
|
Suo Q, Yue Y, Wang J, Wu N, Geng L, Zhang Q. Isolation, identification and in vivo antihypertensive effect of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Spirulina protein hydrolysate. Food Funct 2022; 13:9108-9118. [DOI: 10.1039/d2fo01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The side effects of traditional antihypertensive drugs have driven people's interest in discovery of novel angiotensin-I converting enzyme (ACE) inhibitory peptides with efficiency and safety. Spirulina possesses abundant proteins and...
Collapse
|