1
|
Bodie AR, Wythe LA, Dittoe DK, Rothrock MJ, O’Bryan CA, Ricke SC. Alternative Additives for Organic and Natural Ready-to-Eat Meats to Control Spoilage and Maintain Shelf Life: Current Perspectives in the United States. Foods 2024; 13:464. [PMID: 38338599 PMCID: PMC10855140 DOI: 10.3390/foods13030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Food additives are employed in the food industry to enhance the color, smell, and taste of foods, increase nutritional value, boost processing efficiency, and extend shelf life. Consumers are beginning to prioritize food ingredients that they perceive as supporting a healthy lifestyle, emphasizing ingredients they deem acceptable as alternative or "clean-label" ingredients. Ready-to-eat (RTE) meat products can be contaminated with pathogens and spoilage microorganisms after the cooking step, contributing to food spoilage losses and increasing the risk to consumers for foodborne illnesses. More recently, consumers have advocated for no artificial additives or preservatives, which has led to a search for antimicrobials that meet these demands but do not lessen the safety or quality of RTE meats. Lactates and diacetates are used almost universally to extend the shelf life of RTE meats by reducing spoilage organisms and preventing the outgrowth of the foodborne pathogen Listeria monocytogenes. These antimicrobials applied to RTE meats tend to be broad-spectrum in their activities, thus affecting overall microbial ecology. It is to the food processing industry's advantage to target spoilage organisms and pathogens specifically.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Lindsey A. Wythe
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Athens, GA 30605, USA;
| | - Corliss A. O’Bryan
- Department of Food Science, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA;
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| |
Collapse
|
2
|
Afonso S, Ferreira V, Moreira-Santos M. Comparing the sensitivity of aquatic organisms relative to Daphnia sp. toward essential oils and crude extracts: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168467. [PMID: 37951254 DOI: 10.1016/j.scitotenv.2023.168467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Interest on aromatic and medicinal plants (AMP)-based products, especially crude extracts (CE) and essential oils (EO), has increased over recent years due to their bioactive and biopesticide properties, though a variety of these compounds is environmentally damaging. Aquatic organisms can easily be exposed to the toxicological risks of AMP-based products, but research exploring existing ecotoxicity data to non-target organisms is limited. The present study aimed to, for the first time, systematically review published evidence on the acute/short-term toxicity (LC50, EC50 or IC50) of CE and EO from AMP, comparing sensitivity of aquatic organisms. Eleven studies that reported the sensitivity of aquatic taxa and Daphnia sp. to CE and/or EO, were included in the review, contributing with 27 effect sizes, calculated as the response ratio R (EcotoxicityAquatTaxa/EcotoxicityDaphnia). Meta-analytic technics were used to estimate the overall sensitivity of aquatic taxa relative to Daphnia sp. while identifying moderators [plant preparation (CE or EO), extraction type, plant part, plant family, and aquatic taxa identity] potentially affecting relative sensitivities. The overall effect size R was 1.51 (95 % CI = 0.97 to 2.34, N = 27), indicating a non-significant difference in the toxicity of CE and EO to aquatic taxa relative to Daphnia sp. However, the high heterogeneity among individual effect sizes (I2 = 99 %) suggested opposing responses of aquatic taxa relative to Daphnia sp. The magnitude of effects (R) was strongly influenced only by plant family. Daphnia sp. arose as a potential model organism for assessing the ecotoxicity of CE and EO, along with the fish Danio rerio and the crustacean Thamnocephalus platyurus, while Artemia sp. seems a relevant alternative for a preliminary screening. Likewise, the current study sheds light on the (underestimated) toxicity of CE and EO to aquatic ecosystems and that much remains to be uncovered, providing insights and recommendations for future research.
Collapse
Affiliation(s)
- Sandra Afonso
- CFE-Centre for Functional Ecology, Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Verónica Ferreira
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology, Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
3
|
Askarpour SA, Molaee-Aghaee E, Ghaderi-Ghahfarokhi M, Shariatifar N, Mahmudiono T, Sadighara P, Fakhri Y. Potentially Toxic Elements (PTEs) in Refined and Cold-Pressed Vegetable Oils Distributed in Ahvaz, Iran: a Probabilistic Health Risk Assessment. Biol Trace Elem Res 2023; 201:4567-4575. [PMID: 36525214 DOI: 10.1007/s12011-022-03520-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The concentration of potentially toxic elements (PTEs) in vegetable oils using inductively coupled plasma-optical emission spectrometry (ICP-OES) was measured. Probabilistic non-carcinogenic risk in consumers was estimated using the target hazard quotient (THQ) and total target hazard quotient (TTHQ) by Monte Carlo simulation (MCS) method. The highest content of PTEs was found in blend oil for As (0.39 ± 0.07 mg/L), in cold-pressed rapeseed oil for Cd and Cu (0.07 ± 0 and 0.40 ± 0.06 mg/L) respectively, in cold-pressed sunflower oil for Fe (0.15 ± 0.10 mg/L), in refined sesame oil for Ni and Pb (0.44 ± 0.07 and 0.65 ± 0.07 mg/L, respectively), and in cold-pressed sunflower and rapeseed oils for Zn (0.19 ± 0.04 mg/L). THQ in adults and children due to individual vegetable oils (cold-pressed and refined vegetable oil) was lower than 1 value. TTHQ in adults and children due to consumption of cold-pressed vegetable oils was 0.05 and 0.26, and also refined vegetable oil was 0.51 and 0.33, respectively. TTHQ due to consumption of both types of oils was less than 1; therefore, the population is not at risk of non-carcinogenicity.
Collapse
Affiliation(s)
- Seyed Ali Askarpour
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Ghaderi-Ghahfarokhi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nabi Shariatifar
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Neagu R, Popovici V, Ionescu LE, Ordeanu V, Popescu DM, Ozon EA, Gîrd CE. Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils. Antibiotics (Basel) 2023; 12:1191. [PMID: 37508287 PMCID: PMC10376212 DOI: 10.3390/antibiotics12071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) have gained economic importance due to their biological activities, and increasing amounts are demanded everywhere. However, substantial differences between the same essential oil samples from different suppliers are reported-concerning their chemical composition and bioactivities-due to numerous companies involved in EOs production and the continuous development of online sales. The present study investigates the antibacterial and antibiofilm activities of two to four samples of five commercially available essential oils (Oregano, Eucalyptus, Rosemary, Clove, and Peppermint oils) produced by autochthonous companies. The manufacturers provided all EOs' chemical compositions determined through GC-MS. The EOs' bioactivities were investigated in vitro against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The antibacterial and antibiofilm effects (ABE% and, respectively, ABfE%) were evaluated spectrophotometrically at 562 and 570 nm using microplate cultivation techniques. The essential oils' calculated parameters were compared with those of three standard broad-spectrum antibiotics: Amoxicillin/Clavulanic acid, Gentamycin, and Streptomycin. The results showed that at the first dilution (D1 = 25 mg/mL), all EOs exhibited antibacterial and antibiofilm activity against all Gram-positive and Gram-negative bacteria tested, and MIC value > 25 mg/mL. Generally, both effects progressively decreased from D1 to D3. Only EOs with a considerable content of highly active metabolites revealed insignificant differences. E. coli showed the lowest susceptibility to all commercially available essential oils-15 EO samples had undetected antibacterial and antibiofilm effects at D2 and D3. Peppermint and Clove oils recorded the most significant differences regarding chemical composition and antibacterial/antibiofilm activities. All registered differences could be due to different places for harvesting the raw plant material, various technological processes through which these essential oils were obtained, the preservation conditions, and complex interactions between constituents.
Collapse
Affiliation(s)
- Răzvan Neagu
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Lucia Elena Ionescu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Viorel Ordeanu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Diana Mihaela Popescu
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
5
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
6
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|