1
|
Chen L, Wang F, Hu X, Li N, Gao Y, Xue F, Xie L, Xie M. Transdermal Delivery of Baicalin Based on Bio-Vesicles and Its Efficacy in Antiaging of the Skin. J Cosmet Dermatol 2025; 24:e70024. [PMID: 39946269 PMCID: PMC11824916 DOI: 10.1111/jocd.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
OBJECTIVE To develop a stable and efficient delivery system for baicalin, a flavonoid with potential antioxidant and antiaging properties, to overcome its limitations in solubility, stability, and skin permeability. METHODS Baicalin was encapsulated using ATP synthase molecular motor technology into bio-vesicles derived from yeast/bacillus cell membranes, forming "motor baicalin" (MB). The liposome baicalin (LB), baicalin raw material (BRM), and bio-vesicles were used for comparison. The stability, transdermal penetration, and antioxidant activity of MB, LB, BRM, and bio-vesicles were evaluated through in vitro and in vivo tests. RESULTS MB formed a stable core-shell structure, significantly enhancing the water solubility and long-term stability of baicalin. The tests confirmed superior transdermal penetration and antioxidant activity of MB, evidenced by increased expression of SOD, CAT, and GSH-Px enzymes and improved cell proliferation and migration. Clinical trials demonstrated significant reductions in wrinkle depth and improvements in skin elasticity. CONCLUSION This study presents a promising approach to improving the stability and transdermal delivery of baicalin. MB showcases potent antioxidant and antiaging properties, making it a valuable component in skincare products.
Collapse
Affiliation(s)
- Liang Chen
- Scientific Research LaboratoryShanghai Le‐Surely Biotechnology Co. LtdShanghaiChina
- SASELOMO Research Institute and Biological LaboratoryShanghai Chuanmei Industrial Co. LtdShanghaiChina
| | - Fudi Wang
- Evelab Insight (Singapore) Pte. LtdSingaporeSingapore
| | - Xiaoyun Hu
- Scientific Research LaboratoryShanghai Le‐Surely Biotechnology Co. LtdShanghaiChina
- SASELOMO Research Institute and Biological LaboratoryShanghai Chuanmei Industrial Co. LtdShanghaiChina
| | - Nihong Li
- Scientific Research LaboratoryShanghai Le‐Surely Biotechnology Co. LtdShanghaiChina
- SASELOMO Research Institute and Biological LaboratoryShanghai Chuanmei Industrial Co. LtdShanghaiChina
| | - Ying Gao
- Zhejiang Moda Biotech Co. LtdHangzhouChina
| | - Fengfeng Xue
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ling Xie
- Scientific Research LaboratoryShanghai Le‐Surely Biotechnology Co. LtdShanghaiChina
- SASELOMO Research Institute and Biological LaboratoryShanghai Chuanmei Industrial Co. LtdShanghaiChina
| | - Min Xie
- Scientific Research LaboratoryShanghai Le‐Surely Biotechnology Co. LtdShanghaiChina
- SASELOMO Research Institute and Biological LaboratoryShanghai Chuanmei Industrial Co. LtdShanghaiChina
| |
Collapse
|
2
|
Lu Z, Zhang W, Wu S, Qi K, Zhu S, Zhang X, Chen Y, Chen X, Li Y, Liu F, Kong L. Mitochondrial transplantation reconstructs the oxidative microenvironment within fibroblasts to reverse photoaging. Biochem Biophys Res Commun 2024; 745:151214. [PMID: 39732121 DOI: 10.1016/j.bbrc.2024.151214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Fibroblast-mediated oxidative stress is a pivotal factor in the pathogenesis of skin photoaging, predominantly induced by UVA radiation. Diverging from traditional strategies that concentrate on the reduction of reactive oxygen species (ROS), the present study implements mitochondrial transplantation as an innovative therapeutic approach. The objective of this study is to reestablish the oxidative microenvironment and to effectively rejuvenate cellular functionality through the direct introduction of healthy and vibrant mitochondria. In vitro assays have illustrated that the seamless incorporation of exogenous mitochondria into fibroblasts ameliorates UVA radiation perturbations in membrane potential and oxidative stress, while simultaneously reestablishing the oxidative microenvironment. These interventions exert salutary influences on cellular proliferation and migratory capabilities. Subsequent in vivo analyses reveal a mitigation in dermal collagen depletion, alongside an enhancement in collagen fiber density and tissue architecture post-mitochondrial transplantation, thus ameliorating the manifestations of skin photoaging. Collectively, the study underscores the potential of mitochondrial transplantation as a promising therapeutic intervention for the reversal of skin photoaging by modulating the oxidative microenvironment within fibroblasts.
Collapse
Affiliation(s)
- Zihan Lu
- College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wenhui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Simo Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kai Qi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Simin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Yicheng Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xi Chen
- Digital Dental Center, The Affiliated Hospital of Shaanxi University of Chinese Medicine, People's Republic of China
| | - Yunpeng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
3
|
Wang C, Wang B, Wei Y, Li S, Ren J, Dai Y, Liu G. Effect of Gentianella acuta (Michx.) Hulten against the arsenic-induced development hindrance of mouse oocytes. Biometals 2024; 37:1411-1430. [PMID: 38814492 DOI: 10.1007/s10534-024-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The current study was designed to investigate the alleviative effect of Gentianella acuta (Michx.) Hulten (G. acuta) against the sodium arsenite (NaAsO2)-induced development hindrance of mouse oocytes. For this purpose, the in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs) was conducted in the presence of NaAsO2 and G. acuta, followed by the assessments of IVM efficiency including oocyte maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, redox regulation, epigenetic modification, DNA damage, and apoptosis. Subsequently, the alleviative effect of G. acuta intervention on the fertilization impairments of NaAsO2-exposed oocytes was confirmed by the assessment of in vitro fertilization (IVF). The results showed that the G. acuta intervention effectively ameliorated the decreased maturation potentials and fertilization deficiency of NaAsO2-exposed oocytes but also significantly inhibited the DNA damages, apoptosis, and altered H3K27me3 expression level in the NaAsO2-exposed oocytes. The effective effects of G. acuta intervention against redox dysregulation including mitochondrial dysfunctions, accumulated reactive oxygen species (ROS) generation, glutathione (GSH) deficiency, and decreased adenosine triphosphate (ATP) further confirmed that the ameliorative effects of G. acuta intervention against the development hindrance of mouse oocytes were positively related to the antioxidant capacity of G. acuta. Evidenced by these abovementioned results, the present study provided fundamental bases for the ameliorative effect of G. acuta intervention against the meiotic defects caused by the NaAsO2 exposure, benefiting the future application potentials of G. acuta intervention in these nutritional and therapeutic research for attenuating the outcomes of arseniasis.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
- Department of Environmental Science and Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ying Wei
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, Hohhot, 010010, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China.
| |
Collapse
|
4
|
Farhadi M, Fadavi P, Mohebbi S, Taghizadeh-Hesary F. A new approach to prevent radiation-induced xerostomia using intraglandular injection of mitochondria-boosting agents. BMC Cancer 2024; 24:832. [PMID: 38992600 PMCID: PMC11241784 DOI: 10.1186/s12885-024-12582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2023] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Radiotherapy in patients with head and neck cancer fairly leads to xerostomia, profoundly affecting their quality of life. With limited effective preventive and therapeutic methods, attention has turned to exploring alternatives. This article outlines how intraglandular injection of mitochondria-boosting agents can serve as a potential strategy to reduce salivary acinar damage. This method can contribute to the thoughtful development of study protocols or medications to reduce radiation-induced salivary glands damage.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pedram Fadavi
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran, Iran
- Breast Health Cancer Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Mohebbi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Srivastava P, Bhoumik S, Yadawa AK, Kesherwani R, Rizvi SI. Coenzyme Q 10 supplementation affects cellular ionic balance: relevance to aging. Z NATURFORSCH C 2024; 0:znc-2024-0129. [PMID: 38963236 DOI: 10.1515/znc-2024-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Aging results into disruptive physiological functioning and cellular processes that affect the composition and structure of the plasma membrane. The plasma membrane is the major regulator of ionic homeostasis that regulates the functioning of membrane transporters and exchangers. Coenzyme Q10 is a lipid-soluble antioxidant molecule that declines during aging and age-associated diseases. The present study aims to explore the role of Coenzyme Q10 supplementation to rats during aging on membrane transporters and redox biomarkers. The study was conducted on young and old male Wistar rats supplemented with 20 mg/kg b.w. of Coenzyme Q10 per day. After a period of 28 days, rats were sacrificed and erythrocyte membrane was isolated. The result exhibits significant decline in biomarkers of oxidative stress in old control rats when compared with young control. The effect of Coenzyme Q10 supplementation was more pronounced in old rats. The functioning of membrane transporters and Na+/H+ exchanger showed potential return to normal levels in the Coenzyme Q10 treated rats. Overall, the results demonstrate that Coenzyme Q10 plays an important role in maintaining redox balance in cells which interconnects with membrane integrity. Thus, Coenzyme Q10 supplementation may play an important role in protecting age related alterations in erythrocyte membrane physiology.
Collapse
Affiliation(s)
- Parisha Srivastava
- Department of Biochemistry, 314956 University of Allahabad , Allahabad, Uttar Pradesh 211002, India
| | - Sukanya Bhoumik
- Department of Biochemistry, 314956 University of Allahabad , Allahabad, Uttar Pradesh 211002, India
| | - Arun K Yadawa
- Department of Biochemistry, 314956 University of Allahabad , Allahabad, Uttar Pradesh 211002, India
| | - Rashmi Kesherwani
- Department of Biochemistry, 314956 University of Allahabad , Allahabad, Uttar Pradesh 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, 314956 University of Allahabad , Allahabad, Uttar Pradesh 211002, India
| |
Collapse
|
6
|
Atapour-Mashhad H, Tayarani-Najaran Z, Golmohammadzadeh S. Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents. Heliyon 2024; 10:e31429. [PMID: 38882272 PMCID: PMC11180323 DOI: 10.1016/j.heliyon.2024.e31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
We developed novel and optimal Q10-NLC/SLN formulations as antioxidant and anti-tyrosinase agents. The formulations were analyzed for particle size, morphology, entrapment efficiency (EE %), and long-term stability. The in vitro drug release and in vivo skin penetration were evaluated using dialysis bag diffusion and Sprague Dawley (SD) rats, respectively. Cytotoxicity and protecting effects were assessed by AlamarBlue® assay, ROS level by DCFH-DA, and tyrosinase activity by l-DOPA assay, measuring the absorbance at 470 nm. The selected formulations had optimal surface characterizations, including Z-average size, PDI, and Zeta potential ranging from 125 to 207 nm, 0.09-0.22, and -7 to -24, respectively. They also exhibited physiochemical stability for up to 6 months and EE% above 80 %. The lipids ratio and co-Q10 amount as variable factors significantly affected particle size and zeta potential but were insignificant on PDI. The in vitro release diagram showed that Q10-NLC/SLN revealed a fast release during the first 8 h and prolonged release afterward. The in vivo skin permeation revealed a higher accumulative uptake of co-Q10 in the skin for Q10-NLC/SLN compared to Q10 emulsions. Both selected Q10-NLC and Q10-SLN could reduce intracellular ROS after exposure to H2O2. The Q10-NLC was found to be more potent for inhibiting the tyrosinase activity compared to O10-SLN. The results suggest that the new formulations are promising carriers for topical delivery of co-Q10 as an anti-aging and skin-whitening agent.
Collapse
Affiliation(s)
- Hoda Atapour-Mashhad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Zheng Q, Feng K, Zhong W, Tan W, Rengaowa S, Hu W. Investigating the Hepatoprotective Properties of Mulberry Leaf Flavonoids against Oxidative Stress in HepG2 Cells. Molecules 2024; 29:2597. [PMID: 38893475 PMCID: PMC11173602 DOI: 10.3390/molecules29112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Oxidative stress significantly contributes to ageing and disease, with antioxidants holding promise in mitigating its effects. Functional foods rich in flavonoids offer a potential strategy to mitigate oxidative damage by free radicals. We investigated the protective effects of mulberry leaf flavonoids (MLF) against H2O2-induced oxidative damage in HepG2 cells. It assessed the inhibitory effect of MLF (62.5-500 μg/mL) on H2O2-induced oxidative damage by analyzing cellular morphology and oxidative stress markers, including ROS production, mitochondrial membrane potential, antioxidant enzyme levels, MDA, and apoptosis-related proteins. The results demonstrated that MLF prevented spiny cell formation triggered by 750 μM H2O2 and significantly reduced ROS levels, restored mitochondrial membrane potential, decreased lactate dehydrogenase and alanine transaminase leakage, and reduced MDA content induced by H2O2. MLF also modulated antioxidant enzymes and attenuated oxidative damage to HepG2 cell DNA, as confirmed by staining techniques. These findings indicate the potential of MLF as a hepatoprotective agent against oxidative damage in HepG2 cells.
Collapse
Affiliation(s)
- Qinhua Zheng
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Jilin University, Changchun 130012, China
| | - Ke Feng
- Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China;
| | - Wenting Zhong
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Jilin University, Changchun 130012, China
| | - Weijian Tan
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Jilin University, Changchun 130012, China
| | - Sa Rengaowa
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
| | - Wenzhong Hu
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
8
|
Inchingolo F, Inchingolo AM, Latini G, Ferrante L, Trilli I, Del Vecchio G, Palmieri G, Malcangi G, Inchingolo AD, Dipalma G. Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review. Nutrients 2023; 16:113. [PMID: 38201943 PMCID: PMC10780648 DOI: 10.3390/nu16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, orthodontics, a specialized branch of dentistry, has evolved considerably in terms of both techniques and materials used. Aimed at correcting dental malocclusions and craniofacial anomalies, it improves the functionality and aesthetics of the face and oral cavity. However, orthodontic treatment, in its developmental stages, may induce oxidative stress (O.S.) phenomena, with an increase in the production of reactive oxygen species (ROS), damaging the dental and periodontal tissues involved, affecting the short-, medium- and long-term results. Studies on the antioxidant effects of natural products (e.g., resveratrol, green tea, turmeric, etc.) in the medical field have aroused considerable interest in recent years. A systematic literature review was conducted on the PubMed, Scopus, and Web of Science databases using natural products (N.P.s), O.S., and orthodontic as keywords. The study aims to consider the determinants of the increase in ROS occurring during orthodontic treatment and the possibility of natural products being able to control and neutralize biochemical phenomena by restoring the physiological process in which the balance between the production of ROS and the ability of the body's antioxidant system to neutralize them is in favor of the latter.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppina Malcangi
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (L.F.); (I.T.); (G.D.V.); (G.P.); (A.D.I.); (G.D.)
| | | | | |
Collapse
|
9
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Muvhulawa N, Mazibuko-Mbeje SE, Ndwandwe D, Silvestri S, Ziqubu K, Moetlediwa MT, Mthembu SXH, Marnewick JL, Van der Westhuizen FH, Nkambule BB, Basson AK, Tiano L, Dludla PV. Sarcopenia in a type 2 diabetic state: Reviewing literature on the pathological consequences of oxidative stress and inflammation beyond the neutralizing effect of intracellular antioxidants. Life Sci 2023; 332:122125. [PMID: 37769808 DOI: 10.1016/j.lfs.2023.122125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.
Collapse
Affiliation(s)
- Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
11
|
Lee WE, Genetzakis E, Figtree GA. Novel Strategies in the Early Detection and Treatment of Endothelial Cell-Specific Mitochondrial Dysfunction in Coronary Artery Disease. Antioxidants (Basel) 2023; 12:1359. [PMID: 37507899 PMCID: PMC10376062 DOI: 10.3390/antiox12071359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although elevated cholesterol and other recognised cardiovascular risk factors are important in the development of coronary artery disease (CAD) and heart attack, the susceptibility of humans to this fatal process is distinct from other animals. Mitochondrial dysfunction of cells in the arterial wall, particularly the endothelium, has been strongly implicated in the pathogenesis of CAD. In this manuscript, we review the established evidence and mechanisms in detail and explore the potential opportunities arising from analysing mitochondrial function in patient-derived cells such as endothelial colony-forming cells easily cultured from venous blood. We discuss how emerging technology and knowledge may allow us to measure mitochondrial dysfunction as a potential biomarker for diagnosis and risk management. We also discuss the "pros and cons" of animal models of atherosclerosis, and how patient-derived cell models may provide opportunities to develop novel therapies relevant for humans. Finally, we review several targets that potentially alleviate mitochondrial dysfunction working both via direct and indirect mechanisms and evaluate the effect of several classes of compounds in the cardiovascular context.
Collapse
Affiliation(s)
- Weiqian E. Lee
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Elijah Genetzakis
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
12
|
El-Bassouny DR, Mansour AA, Ellakkany AS, Ayuob NN, AbdElfattah AA. Can coenzyme Q10 alleviate the toxic effect of fenofibrate on skeletal muscle? Histochem Cell Biol 2023:10.1007/s00418-023-02205-5. [PMID: 37270716 PMCID: PMC10386954 DOI: 10.1007/s00418-023-02205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Fenofibrate (FEN) is an antilipidemic drug that increases the activity of the lipoprotein lipase enzyme, thus enhancing lipolysis; however, it may cause myopathy and rhabdomyolysis in humans. Coenzyme Q10 (CoQ10) is an endogenously synthesized compound that is found in most living cells and plays an important role in cellular metabolism. It acts as the electron carrier in the mitochondrial respiratory chain. This study aimed to elucidate FEN-induced skeletal muscle changes in rats and to evaluate CoQ10 efficacy in preventing or alleviating these changes. Forty adult male rats were divided equally into four groups: the negative control group that received saline, the positive control group that received CoQ10, the FEN-treated group that received FEN, and the FEN + CoQ10 group that received both FEN followed by CoQ10 daily for 4 weeks. Animals were sacrificed and blood samples were collected to assess creatine kinase (CK). Soleus muscle samples were taken and processed for light and electron microscopic studies. This study showed that FEN increased CK levels and induced inflammatory cellular infiltration and disorganization of muscular architecture with lost striations. FEN increased the percentage of degenerated collagen fibers and immune expression of caspase-3. Ultrastructurally, FEN caused degeneration of myofibrils with distorted cell organelles. Treatment with CoQ10 could markedly ameliorate these FEN-induced structural changes and mostly regain the normal architecture of muscle fibers due to its antifibrotic and antiapoptotic effects. In conclusion, treatment with CoQ10 improved muscular structure by suppressing oxidative stress, attenuating inflammation, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Dalia R El-Bassouny
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Alyaa A Mansour
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amany S Ellakkany
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nasra N Ayuob
- Medical Histology Department, Faculty of Medicine, Damietta University, Damietta, Egypt
- Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A AbdElfattah
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, El-Tor, Egypt.
| |
Collapse
|
13
|
Li K, Li Y, Ding H, Chen J, Zhang X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040171. [PMID: 37103050 PMCID: PMC10143100 DOI: 10.3390/jcdd10040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The endoplasmic reticulum (ER), an essential organelle in eukaryotic cells, is widely distributed in myocardial cells. The ER is where secreted protein synthesis, folding, post-translational modification, and transport are all carried out. It is also where calcium homeostasis, lipid synthesis, and other processes that are crucial for normal biological cell functioning are regulated. We are concerned that ER stress (ERS) is widespread in various damaged cells. To protect cells' function, ERS reduces the accumulation of misfolded proteins by activating the unfolded protein response (UPR) pathway in response to numerous stimulating factors, such as ischemia or hypoxia, metabolic disorders, and inflammation. If these stimulatory factors are not eliminated for a long time, resulting in the persistence of the UPR, it will aggravate cell damage through a series of mechanisms. In the cardiovascular system, it will cause related cardiovascular diseases and seriously endanger human health. Furthermore, there has been a growing number of studies on the antioxidative stress role of metal-binding proteins. We observed that a variety of metal-binding proteins can inhibit ERS and, hence, mitigate myocardial damage.
Collapse
Affiliation(s)
- Kejuan Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| |
Collapse
|