1
|
Huang L, Rao Q, Wang C, Mou Y, Zheng X, Hu E, Zheng J, Li Y, Liu L. Multi-omics joint analysis reveals that the Miao medicine Yindanxinnaotong formula attenuates non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156026. [PMID: 39388921 DOI: 10.1016/j.phymed.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUD Non-alcoholic fatty liver disease (NAFLD) is a growing chronic liver disease worldwide, and no effective agent is approved yet for this condition. Traditional Chinese Medicine (TCM), which has been practiced for thousands of years in China and other Asian countries, is considered an important source for identifying novel medicines for various diseases. Miao medicine Yindanxinnaotong formula (YDX) is a classical TCM for the treatment of hyperlipidemia disease by reducing blood lipid content, while the role of YDX have not been clarified in NAFLD. PURPOSE To investigate the protective effect of YDX on NAFLD in mice induced by high fat diet (HFD) and clarify the potential mechanism. METHODS NAFLD mice model was constructed by receiving HFD for 10-week period with or without YDX administration. Lipid profiles, biochemical indicators, and histopathological staining were performed to evaluate the extent of hepatic lipid accumulation and hepatic steatosis. 16S rRNA sequencing was used to determine the gut microbial composition. Serum metabolomics was further used to investigate the changes in plasma biomarkers for NAFLD-associated by UPLC-Q-TOF/MS analysis. Subsequently, liver transcriptomics was employed to identify differentially expressed genes and explore regulatory pathways. Then, lipid metabolism-related proteins and inflammation factors were examined by Western blot and ELISA. RESULTS YDX reduced body weight gain, liver index and inflammatory cytokines levels, along with improved hepatic steatosis, serum lipid profile, sensitivity to insulin and also tolerance to glucose, and enhanced oxidative defense system in HFD-induced mice. Also, YDX remarkedly affected gut microbiota diversity and community richness and decreased the ratio of Firmicutes/Bacteroidetes. Meanwhile, YDX also reduced the production of harmful lipid metabolites in the sera of NAFLD mice, such as LPC(18:0), LPC(18:1) and carnitine. Notably, consistent with liver transcriptomics results, YDX downregulated the expression of proteins implicated in de novo lipid synthesis (Srebp-1c, Acaca, Fasn, Scd-1, and Cd36) and pro-inflammatory cytokines (IL-6 and TNF-α), and increased the expression of proteins-related fatty acid β-oxidation (Ampkα, Ppar-α, and Cpt-1) in the liver by activating Ampk pathway. CONCLUSION YDX is promisingly an effective therapy for preventing NAFLD by modulating the Ampk pathway, inhibiting gut microbiota disorder, and reducing the production of harmful lipid metabolites.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chaoyan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yu Mou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiuyan Zheng
- Guizhou Institute of Integrated Agriculture Development, Guiyang 550006, China
| | - Enming Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Ye S, Gao Y, Hu X, Cai J, Sun S, Jiang J. Research progress and future development potential of Flammulina velutipes polysaccharides in the preparation process, structure analysis, biology, and pharmacology: A review. Int J Biol Macromol 2024; 267:131467. [PMID: 38599436 DOI: 10.1016/j.ijbiomac.2024.131467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
In recent years, Flammulina velutipes (F. velutipes) has attracted consequential attention in various research fields due to its rich composition of proteins, vitamins, amino acids, polysaccharides, and polyphenols. F. velutipes polysaccharides (FVPs) are considered as key bioactive components of F. velutipes, demonstrating multiple physiological activities, including immunomodulatory, anti-inflammatory, and antibacterial properties. Moreover, they offer health benefits such as antioxidant and anti-aging properties, which have exceptionally valuable clinical applications. Polysaccharides derived from different sources exhibit a wide range of biomedical functions and distinct biological activities. The varied biological functions of polysaccharides, coupled with their extensive application in functional foods and clinical applications, have prompted a heightened focus on polysaccharide research. Additionally, the extraction, deproteinization, and purification of FVPs are fundamental to investigate the structure and biological activities of polysaccharides. Therefore, this review provides a comprehensive and systematic overview of the extraction, deproteinization, purification, characterization, and structural elucidation of FVPs. Furthermore, the biological activities and mechanisms of FVPs have been further explored through in vivo and in vitro experiments. This review aims to provide a theoretical foundation and guide future research and development of FVPs.
Collapse
Affiliation(s)
- Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Yi Gao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Xiangyan Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang medical school, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Shu Y, Wang H, Jiang H, Zhou S, Zhang L, Ding Z, Hong P, He J, Wu H. Pleurotus ostreatus polysaccharide-mediated modulation of skin damage caused by microcystin-LR in tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123440. [PMID: 38290654 DOI: 10.1016/j.envpol.2024.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
In this study, we aimed to evaluate the effect of dietary supplementation with edible mushroom (Pleurotus ostreatus)-derived polysaccharides on microcystin leucine-arginine (MC-LR)-induced skin damage in Pelophylax nigromaculatus tadpoles. Tadpoles were exposed to 1 μg/L daily MC-LR, with or without 5.0 g/kg of dietary P. ostreatus polysaccharides, for 30 days. P. ostreatus polysaccharide supplementation significantly increased the dermal collagen fibrils, increased tight junction protein gene expression, decreased the amount of MC-LR accumulation in skin tissues, attenuated oxidative stress, downregulated apoptosis-associated gene transcription, decreased eosinophil numbers, and downregulated transcription of inflammation-related genes (e.g. TLR4, NF-κB, and TNF-α). The composition of the skin commensal microbiota of MC-LR-exposed tadpoles supplemented with P. ostreatus polysaccharides was similar to that of the no-treatment control group. Lipopolysaccharide (LPS) content was positively correlated with the abundance of Gram-negative bacteria, including Chryseobacterium and Thauera. Therefore, P. ostreatus polysaccharides may alleviate MC-LR-induced skin barrier damage in tadpoles in two ways: 1) attenuation of oxidative stress-mediated apoptosis mediated by increased glutathione (GSH) content and total superoxide dismutase activity; and 2) alteration of the skin commensal microbiota composition to attenuate the LPS/Toll-like receptor 4 inflammatory pathway response. Furthermore, P. ostreatus polysaccharides may increase skin GSH synthesis by promoting glycine production via the gut microbiota and may restore the MC-LR-damaged skin resistance to pathogenic bacteria by increasing antimicrobial peptide transcripts and lysozyme activity. This study highlights for the first time the potential application of P. ostreatus polysaccharides, an ecologically active substance, in mitigating the skin damage induced by MC-LR exposure, and may provide new insights for its further development in aquaculture.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hui Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Shiwen Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Liyuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Zifang Ding
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Department of Pathology, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
4
|
Cuffaro D, Digiacomo M, Macchia M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients 2023; 15:4966. [PMID: 38068824 PMCID: PMC10707977 DOI: 10.3390/nu15234966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
5
|
Zeng J, Shi D, Chen Y, Bao X, Zong Y. FvbHLH1 Regulates the Accumulation of Phenolic Compounds in the Yellow Cap of Flammulina velutipes. J Fungi (Basel) 2023; 9:1063. [PMID: 37998869 PMCID: PMC10672597 DOI: 10.3390/jof9111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Flammulina velutipes is a renowned edible and medicinal fungus. Commercially cultivated F. velutipes occurs in two distinct phenotypes: white and yellow. However, the underlying mechanism contributing to the yellow phenotype and high nutritional value remain uncertain. We reconfirmed that the browning process in F. velutipes is attributable to melanin accumulation, although the initial yellow cap seemed unrelated to melanin. A transcriptomic and metabolomic joint analysis revealed that 477 chemical compounds categorized into 11 classes, among which 191 exhibited significantly different levels of accumulation between different phenotypes. Specifically, 12 compounds were unique to the yellow F. velutipes, including ferulic acid, and 3-Aminosalicylic acid. Free fatty acids and xanthine were identified as the primary compounds correlating with the yellow and oily cap. A total of 44,087 genes were identified, which were more homologous to Pleurotus ostreatus PC15. Structural genes such as PAL (phenylalanine ammonialyase), C4H (cinnamate 4-hydroxylase), C3H (Coumarin-3-hydroxylase), AoMT (caffeoyl coenzyme A-O-methyltransferase), and 4CL (4-coumarate: CoA ligase) were up-regulated, thereby activating the lignin biosynthesis and metabolism pathway. Additionally, FvbHLH1 can lead to the consumption of a huge amount of phenylalanine while generating flavonoids and organic acid compounds. Meanwhile, ferulic acid biosynthesis was activated. Therefore, this study clarifies the chemical and molecular bases for the yellow phenotype and nutritional value of F. velutipes.
Collapse
Affiliation(s)
- Jiangyi Zeng
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Xining 810008, China;
- South China Botanical Garden, Guangzhou 510650, China;
| | - Dingding Shi
- South China Botanical Garden, Guangzhou 510650, China;
| | - Ying Chen
- College of Education, Qinghai Normal University, Xining 810008, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xuemei Bao
- College of Education, Qinghai Normal University, Xining 810008, China;
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Xining 810008, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
6
|
Pak U, Cheng H, Liu X, Wang Y, Ho C, Ri H, Xu J, Qi X, Yu H. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis. Int J Biol Macromol 2023; 248:125896. [PMID: 37481190 DOI: 10.1016/j.ijbiomac.2023.125896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this study, we isolated the pectic polysaccharide WSMP-A2b (37 kDa) from the stems and leaves of Swertia mileensis, and we investigated its compositional/structural features and antioxidant activity. FT-IR, NMR, monosaccharide composition, enzymatic hydrolysis and methylation analyses indicated that WSMP-A2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 2.1:1.0:2.2. The RG-I domain is primarily substituted with α-L-1,5-arabinan and type II arabinogalactan (AG-II) side chains, as well as minor contributions of β-D-1,4-galactan and/or type I arabinogalactan (AG-I) side chains. The HG domain was released in the form of un-esterified and partly methyl-esterified and/or acetyl-esterified oligogalacturonides with a 1 to 7 degree of polymerization after endo-polygalacturonase degradation. WSMP-A2b showed stronger antioxidant activity in vitro, in part this might due to the presence of galacturonic acid (GalA). In addition, WSMP-A2b exerted a protective effect on tert-butyl hydroperoxide (tBHP)-induced oxidative stress in INS-1 cells by reducing reactive oxygen species (ROS) production and increasing the glutathione/oxidized glutathione (GSH/GSSG) ratio. Our results provide crucial structural information on this pectic polysaccharide from Swertia mileensis, thus prompting further investigation into its structure-activity relationship.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Hao Cheng
- Department of Clinics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xianbin Liu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuwen Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - HyonIl Ri
- Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Jing Xu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China; Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China.
| |
Collapse
|
7
|
Iciek M, Górny M, Kotańska M, Bilska-Wilkosz A, Kaczor-Kamińska M, Zagajewski J. Yohimbine Alleviates Oxidative Stress and Suppresses Aerobic Cysteine Metabolism Elevated in the Rat Liver of High-Fat Diet-Fed Rats. Molecules 2023; 28:2025. [PMID: 36903271 PMCID: PMC10004569 DOI: 10.3390/molecules28052025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Yohimbine is a small indole alkaloid derived from the bark of the yohimbe tree with documented biological activity, including anti-inflammatory, erectile dysfunction relieving, and fat-burning properties. Hydrogen sulfide (H2S) and sulfane sulfur-containing compounds are regarded as important molecules in redox regulation and are involved in many physiological processes. Recently, their role in the pathophysiology of obesity and obesity-induced liver injury was also reported. The aim of the present study was to verify whether the mechanism of biological activity of yohimbine is related to reactive sulfur species formed during cysteine catabolism. We tested the effect of yohimbine at doses of 2 and 5 mg/kg/day administered for 30 days on aerobic and anaerobic catabolism of cysteine and oxidative processes in the liver of high-fat diet (HFD)-induced obese rats. Our study revealed that HFD resulted in a decrease in cysteine and sulfane sulfur levels in the liver, while sulfates were elevated. In the liver of obese rats, rhodanese expression was diminished while lipid peroxidation increased. Yohimbine did not influence sulfane sulfur and thiol levels in the liver of obese rats, however, this alkaloid at a dose of 5 mg decreased sulfates to the control level and induced expression of rhodanese. Moreover, it diminished hepatic lipid peroxidation. It can be concluded that HFD attenuates anaerobic and enhances aerobic cysteine catabolism and induces lipid peroxidation in the rat liver. Yohimbine at a dose of 5 mg/kg can alleviate oxidative stress and reduce elevated concentrations of sulfate probably by the induction of TST expression.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Magdalena Górny
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Jacek Zagajewski
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| |
Collapse
|